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Abstract

We report results from an exploratory study implementing a new probe of Galactic evolution using archival Hubble
Space Telescope imaging observations. Precise proper motions are combined with photometric relative metallicity
and temperature indices, to produce the proper-motion rotation curves of the Galactic bulge separately for metal-
poor and metal-rich main-sequence samples. This provides a “pencil-beam” complement to large-scale wide-field
surveys, which to date have focused on the more traditional bright giant branch tracers. We find strong evidence
that the Galactic bulge rotation curves drawn from “metal-rich” and “metal-poor” samples are indeed discrepant.
The “metal-rich” sample shows greater rotation amplitude and a steeper gradient against line-of-sight distance, as
well as possibly a stronger central concentration along the line of sight. This may represent a new detection of
differing orbital anisotropy between metal-rich and metal-poor bulge objects. We also investigate selection effects
that would be implied for the longitudinal proper-motion cut often used to isolate a “pure-bulge” sample. Extensive
investigation of synthetic stellar populations suggests that instrumental and observational artifacts are unlikely to
account for the observed rotation curve differences. Thus, proper-motion-based rotation curves can be used to
probe chemodynamical correlations for main-sequence tracer stars, which are orders of magnitude more numerous
in the Galactic bulge than the bright giant branch tracers. We discuss briefly the prospect of using this new tool to
constrain detailed models of Galactic formation and evolution.
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1. Introduction

The diversity of observed properties of the Galactic bulge
has challenged attempts to provide a coherent explanation for
its formation and subsequent development. For example, while
color-magnitude diagrams (CMDs) suggest that the majority of
bulge stars are likely older than ~8 Gyr (e.g., Kuijken &
Rich 2002; Zoccali et al. 2003; Clarkson et al. 2008; Calamida
et al. 2014; although see, e.g., Nataf & Gould 2012; Haywood
et al. 2016; Bensby et al. 2017, for alternative interpretations),
minority populations of younger objects have been detected
(e.g., Sevenster et al. 1997; van Loon et al. 2003). That
measurements of even bulk parameters like bar orientation and
axis ratio have not converged with time (e.g., Vanhollebeke
et al. 2009) is consistent with a dependence of these properties
on the ages of the tracers used. For example, Catchpole et al.
(2016) find distinct bar/bulge spatial structures coexisting in
the same volume, traced by Mira populations of different
estimated ages. As shown by Ness et al. (2013a), the various
apparent observational contradictions may be resolved by a
scenario in which most bulge stars did indeed form early but
later were rearranged into their present-day spatial and

* Based on observations made with the NASA/ESA Hubble Space Telescope
and obtained from the data archive at the Space Telescope Science Institute.
STScl is operated by the Association of Universities for Research in
Astronomy, Inc., under NASA contract NAS 5-26555.

kinematic distributions by disk-driven evolution. Recent
reviews of Galactic bulge observations and formation scenarios
include Rich (2015), Babusiaux (2016), Zoccali & Valenti
(2016), and Nataf (2017).

Observations have long suggested a codependence between
chemical abundance and kinematics in the bulge, particularly as
traced by velocity dispersion, providing an observational test of
formation and evolution scenarios (e.g., Rich 1990; Minniti
1996). Metal-rich samples show a steeper increase in radial
velocity dispersion with Galactic latitude than do the metal-
poor objects (whose dispersion-latitude profile at latitude
|b| 2 4° is only gently sloped and may be flat). While
differences exist in the literature as to the [Fe/H] cuts used
to define the two samples, for latitudes |b| < 3° the metal-poor
and metal-rich samples have consistent radial velicity disper-
sions (Figure 4 of Babusiaux (2016) presents a recent
compilation for fields along the bulge minor axis). For the
very innermost fields in the bulge (b < 190 and |I| < 2°), a
radial velocity dispersion “inversion” may even be present (an
expression of a steeper dispersion gradient with longitude for
metal-rich objects), with the metal-rich stars showing greater
velocity dispersion than the metal-poor objects in bins closest
to the Galactic center (e.g., Babusiaux et al. 2014; Zoccali
et al. 2017).

Turning to proper motions, Spaenhauer et al. (1992) traced the
proper-motion dispersion for a sample of 57 bulge giants toward
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Baade’s window, allowing the first test of bulge chemical and
kinematic codependence using proper motions. No statistically
significant discrepancy in proper-motion dispersion was found
between metal-poor (defined as [Fe/H] < 0.0) and metal-rich
([Fe/H] > 0.0) objects (with Galactic latitudinal proper-motion
dispersion difference Ao,; ~ 0.5 & 0.6 masyr ~ between the
samples), although the sample size was not large. Zhao et al.
(1994) combined the Spaenhauer et al. (1992) ground-based
proper motions with published radial velocities and metallicities
to demonstrate a break in vertex deviation near [Fe/H] ~ —0.5.
Soto et al. (2007, 2012) demonstrated consistent variation of
vertex deviation using Hubble Space Telescope (HST) proper
motions for bright giants (for which spectroscopic abundances
and radial velocities completed the set of observational
parameters; Babusiaux (2016) shows a more recent compilation
of vertex deviation as a function of metallicity).

The implications of observational chemical-dynamical
correlations for formation models of the inner Milky Way are
the subject of vigorous ongoing observational and theoretical
research. For example, Debattista et al. (2017) showed that
samples drawn from a continuous metallicity distribution in a
pure-disk galaxy model can be “kinematically fractionated” by
bar formation into metal-rich and metal-poor populations with
quite different morphology and dynamics, depending on their
initial (galactocentric) radial velocity dispersions. (In this
scenario, radial velocity dispersion and metallicity each
correlate with the time at which the population formed; thus,
they correlate with each other.) This is consistent with the
tendency of the “X” shape to be preferentially populated by
metal-rich stars (e.g., Vasquez et al. 2013, although the
magnitude of this preference is somewhat uncertain; see, e.g.,
Nataf et al. 2014). Bias in the “X” shape toward metal-rich stars
has now also been observed in NGC 4710, a nearby disk-
dominated galaxy viewed almost edge-on (Gonzalez et al.
2016, 2017).

Shen et al. (2010) argue that the radial velocities and
morphology of bulge stellar populations show no need for a
substantial spheroidal “classical” bulge component (at the level
of <8% of the disk mass), arguing that the Milky Way can be
characterized as a pure-disk galaxy. Nonetheless, a small
spheroidal component probably has been detected, although its
likely contribution to the total bulge mass is likely well under
10% (Kunder et al. 2016). Interpretation of this component in
the context of Galactic formation is not clear; it might, for
example, represent part of the halo population that has
also probably been detected in the inner Milky Way (Koch
et al. 2016).

1.1. Does Bulge Rotation Depend on Metallicity?

In addition to velocity dispersion trends, the trend in bulge
mean radial velocity (against Galactic longitude or galacto-
centric radius) might also be expected to vary with metallicity,
but here the magnitude (or even existence) of such a
dependence is less clear. Earlier spectroscopic surveys suggest
a clear difference between metal-poor and metal-rich samples.
For example, Harding & Morrison (1993) and Minniti (1996)
demonstrated that “metal-rich” stars show a gradient in
circular speed with galactocentric radius, consistent with the
“solid-body”’-type rotation traced by planetary nebulae (Kinman
et al. 1988), Mira variables (Menzies 1990), and SiO masers
(Nakada et al. 1993). In contrast, metal-poor objects (using
[Fe/H] < —1.0, and thus likely including a large contribution
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from the inner halo) showed no strong evidence for a rotational
trend. More recently, Kunder et al. (2016) found that their
metal-poor RR Lyrae sample with mostly subsolar metallicities
(—2.4 < [Fe/H] < +0.3, peaking at [Fe/H] ~ —1.0) shows no
strong signature of rotation from radial velocities in any
Galactic latitude range. This is in contrast to the majority-bulge
population, which shows bulk rotation with amplitude
vee = ~80km s~ progressing from the first to fourth Galactic
quadrant (e.g., Howard et al. 2009; Kunder et al. 2016). This
rotation-free component is estimated to be a rather small part of
the overall bulge stellar population (Kunder et al. 2016).

Restricting attention to [Fe/H] 2 —1.0 (to sample mainly
bulge and disk stars), the body of more recent spectroscopic
studies does not show strong evidence for metallicity
dependence of radial velocity rotation curves (usually plotted
against Galactic longitude). For example, the ARGOS survey
(Ness et al. 2013b) and the Gaia-ESO survey (Williams
et al. 2016) each show no strong difference between metal-
rich and metal-poor bulge objects (the studies use slightly
different cuts for metal-rich and metal-poor objects). However,
the Giraffe Inner-Bulge Survey (GIBS, which is unusual
among the spectroscopic studies in reaching as close as
b = —2° to the Galactic midplane) shows a possible difference
in rotation curve slope between objects at [Fe/H] < —0.3 and
[Fe/H] > +0.2; however, at about 1.50 significance, the
difference is not yet compelling (Zoccali et al. 2017). Thus,
the radial velocity surveys focusing on the majority-bulge
population (with [Fe/H] = —1.0) show no strong metallicity
dependence in the trends of mean radial velocity against
Galactic longitude.

Proper motions offer an independent method to kinemati-
cally chart the bulge rotation curves and, if information on
chemical composition is available, explore whether multiple
abundance samples really do show distinct mean motions, as
well as the well-established velocity dispersion differences.

To date, proper-motion investigations in the context of
multiple populations (or a continuum) have mostly been
performed using bright giants. For example, in addition to
the vertex deviation investigations reported in the previous
section, proper motions of bulge giants using OGLE (Poleski
et al. 2013) and with the Wide Field Imager on the La Silla
2.2m telescope (Vasquez et al. 2013) have been used to
uncover azimuthal streaming in the bulge X-shaped structure.
However, Qin et al. (2015) caution via N-body models that the
underlying bar pattern speed cannot directly be constrained
just from the near-side/far-side longitudinal proper-motion
difference.

The above radial velocity and proper-motion studies all use
bright giants as tracers, often red clump giants (RCGs), which
are much less spatially crowded from the ground than are main-
sequence (MS) objects. This causes them to be limited by the
small intrinsic population size per field of view. For example,
ARGOS typically observed about 600 stars at [Fe/H] > —1.0
per 2°-diameter field of view (Ness et al. 2013b). Thus, mean
velocities interpreted for rotation trends represent averages both
over quite large angular regions on the sky and, more
importantly, over the entire distance range along the line of
sight.

To make further progress, an independent measure of bulge
rotation is needed, using a tracer sample sufficiently populous
that the sample can be dissected by line-of-sight distance to
mitigate the statistical limitations of giant branch tracers. MS
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tracers are orders of magnitude more common on the sky,
affording the opportunity to dissect a single sight line along the
line of sight, thus offering a “pencil-beam” complement to the
wide-field surveys that use the bright end of the CMD.’

It is the charting of the chemically dissected bulge rotation
curve from MS proper motions that we report here. Because
this is a relatively new technique, we briefly review the short
literature in MS proper-motion bulge rotation curve determina-
tion before proceeding further.

1.2. Proper Motions of Main-sequence Bulge Populations

Proper-motion-based rotation curves'® from MS bulge stars
are relatively rare in the literature.!! Kuijken & Rich (2002)
were the first to demonstrate the approach for MS populations,
for both the Baade and Sagittarius windows, presenting the
HST/WFPC2-derived rotation and dispersion curves against
photometric parallax (with photometric parallax determined as
a linear combination of color and magnitude in order to remove
the color—magnitude slope of the MS tracer population of
interest). This demonstrated a clear sense of rotation, with the
near side of the bulge showing positive mean longitudinal
proper motion relative to the far side (a determination made
before the much brighter RCGs were used to show bulge
rotation from proper motions; Sumi et al. 2004). The proper-
motion dispersion showed a slight increase in the most
populous middle bins of photometric parallax (most strongly
pronounced in the latitudinal proper-motion dispersion o) for
their Sagittarius window field. Kuijken (2004) presented an
extension of this work to multiple fields across the bulge,
including the use of three minor-axis fields to estimate
the vertical gravitational acceleration along the Galactic minor
axis.

Koztowski et al. (2006) were able to demonstrate similar
behavior to the Kuijken & Rich (2002) rotation curves in their
analysis of proper motions in Baade’s window. This was the
only field for which a sufficiently large sample of sufficiently
precisely measured MS stars could be measured from their
large 35-field study (which used WFPC2 for early-epoch
observations and ACS/HRC for late-epoch observations).
While their dispersion curve is consistent with a flat
distribution, the rotation trend in Galactic longitude was clearly
observed. Koztowski et al. (2006) may also have been the first
to detect the weak trend in latitudinal proper motion g, due to
solar reflex motion (see Vieira et al. 2007, for discussion of this
effect, including its detection using sets of ground-based
observations of bulge giants over a 21 yr time baseline). In any
case, Koztowski et al. (2006) were the first to detect the proper-
motion correlation Cj;, at statistical significance from any
population (using the RCGs that formed their main target
population), using it to constrain the tilt angle of the bulge

° Indeed, bulge giants are so bright that they can be challenging to precisely

and efficiently measure from space.

10 Throughout, the rotation curve is defined as the run of the mean proper
motion (or transverse velocity) against relative photometric parallax (or
distance). The run of proper-motion dispersion (or velocity disperson) is
referred to as the dispersion curve. The rotation curve is distinct from the
circular speed curve (the run of circular speed about the Galactic center against
distance from the Galactic center), which requires projection to cylindrical
Galactic coordinates and an assumption of the orbit shape.

! For clarity of presentation, here and throughout we define the “near side” of
the bulge to be the sample closer to the observer than the bulge midpoint along
the line of sight, and the “far side” to be its counterpart farther than this
midpoint. MS stars on the bulge near side can thus generally be distinguished
from their counterparts on the far side by photometric parallax.
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velocity ellipsoid. As they point out, detection of Cj; (or
equivalently the orientation angle ¢, of the proper-motion
ellipsoid) allows constraints to be placed on the orbit families
for bulge populations, although the conversion from observa-
tion to physical constraint is not simple (e.g., Zhao et al. 1994;
Hifner et al. 2000; Rattenbury et al. 2007).

Clarkson et al. (2008, hereafter Cl08) extended the rotation
curve approach, using a much deeper data set with ACS/
WEFC toward the Sagittarius window, estimating photometric
parallax directly with reference to a fiducial isochrone
describing the average population in the CMD. Consistent
with Kuijken & Rich (2002) and Koztowski et al. (2006), this
showed a clear sense of rotation in Galactic longitude, a clear
detection of the latitudinal proper-motion trend from near side
to far side, and a pronounced peak in the velocity dispersion of
both coordinates (o; and o) coincident with the most densely
populated section of the photometric distance range of the
sample. Cl08 converted proper motions to velocities, charting
the run of the mean velocity (i.e., the rotation curves), the
semiminor and semimajor axis lengths (i.e., the velocity
dispersions), and the variation of the orientation ¢y of the
projected velocty ellipse with line-of-sight distance, and
verified through simulation and comparison with the behavior
of RCGs that indeed distance effects are observable in MS
photometric parallax (though unlike RCG tracers, unresolved
binaries blur somewhat the inferred distances for a given MS
population).

More recently, in a careful study of three off-axis bulge
fields using WFPC2 for early-epoch observations and ACS/
WEC for the late epoch, Soto et al. (2014) were able to extract
the rotation curve (and associated proper-motion dispersion
curves) for a field farther from the midplane, at (I, b) =
(4+3°58, —7°17)."? Soto et al. (2014) also computed the run of
velocity ellipse orientation ¢; with photometric distance,
finding trends consistent with Cl08. The kinematics of MS
objects at some distance from the plane were thus established to
be broadly similar to those at the more central Baade and
Sagittarius window fields.

Ground-based surveys are now starting to measure proper
motions for MS bulge objects. For example, proper motions
from the VVV survey have already been used to draw proper-
motion rotation curves for both giant branch and upper MS
populations (although the upper MS population shows much
higher proper-motion scatter and substantially different selec-
tion effects compared to the giants; Smith et al. 2018).

The lack of metallicity information for MS populations has
limited both the measurement accuracy and scientific applic-
ability of MS proper-motion rotation curves. The [Fe/H]
spread for bulge populations contributes a scatter of up to
~1 mag on the MS (e.g., Haywood et al. 2016), competing
with the photometric parallax signal due to the intrinsic distance
distribution along the line of sight. While comparison with the
behavior of RCGs suggests that indeed the rotation curve can be
recovered, a lack of [Fe/H] information for the MS tracers
contributes to substantial mixing in photometric parallax that
can dilute the signature of underlying rotation (Clarkson
et al. 2008). Conversely, charting bulge proper-motion rotation
curves from samples partitioned by relative metallicity allows
an independent probe of the chemical and dynamical

12 This was the only field of the three analyzed by Soto et al. (2014) with a
sufficient number of well-measured stars to produce the rotation curve from
proper motions.
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Table 1
Provenance of the Observational Data Sets Used in This Work

Data Set Program (PI) Observation Dates Instrument Filters or Wavelength range Nan Sections
SWEEPS HST GO-9750 (Sahu) 2004 Feb (MJD 53060) HST-ACS/WEC F606W, F814W 339,193 Section 2.1

HST GO-12586 (Sahu) 2011 Oct-2013 Oct

HST GO-13057 (Sahu) (MJD 56333)
BTS HST GO-11664 (Brown) 2010 May HST-WFC3/UVIS F390W, F555W, F814W 52,596 Section 2.2

HST-WFC/IR F110W, F160W

VLT ESO 073.C-0410(A) 2004 Jun VLT-UT2/UVES 4812-5750 A 123 Appendix C.1

(Minniti)

5887-6759 A

Note. N, represents the number of objects in each catalog (with measurements in all filters for SWEEPS and BTS). The median modified Julian dates are indicated
for the 2004 and the 2011-2012-2013 SWEEPS epochs. The SWEEPS field lies at («, 8)52000.0 ~ (17:59:00.7, —29:11:59.1), or (I, b)j2000.0 ~ (+1°26, —2°65).

correlations resulting from the complex formation and evolu-
tionary processes at work in the inner Milky Way.

1.3. Main-sequence Proper Motions for Multiple Populations

Until recently, no observational data set existed that would
allow the proper-motion-based rotation curves to be charted for
multiple spatially overlapping MS metallicity samples in the
bulge, as the relevant tracer samples (a few magnitudes beneath
the MS turnoff, and well clear of the subgiant and giant
branches in the CMD) are far too faint and spatially crowded
for objects to be chemically distinguished using current
spectroscopic technology.

The situation changed with the WFC3 Bulge Treasury
Survey (hereafter BTS; Brown et al. 2009), which used three-
filler flux ratios to construct a “temperature” index [¢]
(a function of F555W, F110W, and F160W magnitudes, similar
to V, J, H) and a “metallicity” index [m] (using F390W,
F555W, and F814W magnitudes, similar to Washington-C, V,
I), with scale factors chosen so that [¢] and [m] are relatively
insensitive to reddening. This allows stars to be chemically
tagged in a relative sense by their location in [m], [] space,
down to much fainter limits and in regions of higher spatial
density than currently allowed by spectroscopy. Brown et al.
(2010) showed that indeed the wide bulge metallicity range can
be traced photometrically by this method, setting [¢] and
[m] indices for tens of thousands of MS objects in each of
the four observed bulge fields. Inverting the photometric
indices then produced relative [Fe/H] distributions broadly
similar to the spectroscopic indications from much brighter
objects (e.g., Hill et al. 2011; Johnson et al. 2013). Computing
these indices appropriately for objects near the bulge MS
turnoff, Brown et al. (2010) found that the candidate exoplanet
hosts of the SWEEPS field (Sahu et al. 2006) tend to pile up at
the metal-rich end of the [m] distribution as expected,
suggesting that [m] is indeed tracking metallicity. Exploitation
of this unique data set to directly constrain the star formation
history of the bulge is ongoing (see Gennaro et al. 2015, for an
example of the techniques involved).

Here we combine the relative metallicity estimates from
WEFC3 BTS photometry with ultradeep proper motions using
ACS/WEFC, to construct the proper-motion-based rotation
curves of candidate “metal-poor” and “metal-rich” MS sam-
ples, and examine whether and how the kinematics of the two
samples differ from each other. Our work represents the first
extension of chemodynamical studies of the bulge down to
the MS.

This paper is organized as follows. The observational data
sets are introduced in Section 2, with the techniques used to
classify samples as “metal-poor” or “metal-rich” and to draw
rotation curves described in Section 3. The rotation curves
themselves are presented in Section 4. Section 5 discusses the
implications of our results for the distribution of populations
within both the bulge and proper-motion sample selection and
discusses the impact of various systematic effects, with
conclusions outlined in Section 6. Appendices A-I provide
supporting information, including the full set of results in
tabular form.

2. Observations

By the standards of modern proper-motion measurements
with HST (e.g., Sahu et al. 2017), the relative streaming
motions of the near- and far-side bulge populations are not
small, the mean motion of the bulge near side being typically
Apy ~ 2masyr ' relative to the far side, while the foreground
disk is separated from the bulge by relative proper motion
Apy, ~ 4 mas yr~!, although the intrinsic proper-motion
dispersion is of roughly similar magnitude (Calamida
et al. 2014). Thus, extraction of proper-motion-based rotation
curves should in general be reasonably straighforward for many
bulge fields for which multiple epochs are available.

For this exploratory study, however, we choose the deepest
and most precisely measured sample of HST proper motions
available toward the bulge, to minimize complications due to
completeness effects and varying measurement uncertainty.
This is the SWEEPS data set, which, with many epochs over a
9 yr time baseline, represents the current state of the art in
space-based proper-motion measurement toward the bulge with
HST (e.g., Calamida et al. 2015, Kains et al. 2017). We
attached SWEEPS proper motions (Section 2.1) to the
BTS photometry (Section 2.2), to afford the maximum
sensitivity to proper motions for populations that we can label
chemically in a relative sense. Table 1 summarizes the
observations.

Figure 1 presents a finding chart. The observations cover a
single ACS/WEFC field of view (~3!4 x 3’4) in the Sagittar-
ius window, a low-reddening region (E(B — V) ~ 0.5-0.7,
depending on the reddening prescription; e.g., Cal5) that is
close in projection to the Galactic center (I, b = 1926, —2°65).

2.1. SWEEPS Photometry and Proper Motions

The SWEEPS data set used here consists of an extremely
deep imaging campaign with a 9 yr time baseline using
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Figure 1. Finding chart for the SWEEPS ACS/WFC and BTS WFC3 data
sets used in this work. The tilted solid dark magenta grid shows Galactic
coordinates, spaced at 0°02 intervals. The dotted gray grid shows equatorial
coordinates, spaced at 1’ intervals. The green polygon shows the
BTS WFC3 coverage; our sample is drawn from the region of overlap
between the two surveys. North is up, east left, and the ACS/WEC field
of view is approximately 3’4 x 3’4, centered approximately at (a,
Oy20000 = (17:59:00.7, —29:11:59.1), or (/, b)yo00.0 ~ (+1°26, —2°65). See
Section 2.

ACS/WFC in F606W and F814W (programs GO-9750,
GO-12586, and GO-13057; PI K. C. Sahu). The observations
and analysis techniques used to produce the proper motions and
photometry used herein are described in some detail in previous
papers (Sahu et al. 2006, hereafter Sa06; Cl08; Calamida
et al. 2014, hereafter Cal4; Calamida et al. 2015,
hereafter Cal5; Kains et al. 2017). Here we briefly describe
the relevant characteristics for the present study.

Stellar positions in individual images were estimated using
the distortion solution and effective point-spread function
(PSF) methods developed by J. Anderson for HST and
implemented for ACS/WFC in the img2xym.F routine
(Anderson & King 2006) and associated utilities. This yields
highly precise position measurements in a reference frame
that is nearly free of distortion. With these techniques,
per-measurement random uncertainties are as small as
ex,y ~ 0.002 pixels per coordinate (e.g., Figure 3 of Cl08),
and residual distortion is as low as ~0.01 pixels (Anderson &
King 2006; see also Appendix A). Detailed discussion of the
methods can be found in Anderson & King (2006) and
Anderson et al. (2008a, 2008b).

The 2011-2012-2013 epoch consists of 60 (61) images in
F606W (F814W) taken with an approximately 2-week
cadence, while the 2004 epoch consists of 254 (265) exposures
in F606 W (F814W) taken over a 1-week interval in 2004 (Sa06,
all exposures in both programs being ~5.5 minutes each, which
well samples the bulge MS and minimizes downtime for buffer
dumps).

Because the disk and bulge stars move relative to each other,
the 2011-2012-2013 images were reduced separately from
those in the 2004 epoch. Proper motions were derived from the
best-fit positional differences between the 2004 and
2011-2012-2013 data sets; they thus represent two-epoch
proper motions, but with positions in each individual epoch
measured to very high accuracy. The positional differences (in

Clarkson et al.

ACS/WEFC pixels) were rotated into a frame aligned with
Galactic coordinates and converted from a displacement in
pixels into rate of positional change in masyr ' using the
ACS/WEFC plate scale (50 mas pixel 'in the distortion-free
frame of Anderson & King 2006) and the time baseline
between the two epochs (8.96yr; Table 1). This yields
transverse relative motions in masyr  in a frame closely
aligned with the Galactic coordinate system.

Without absolute reference-frame tracers in this crowded
field (e.g., Yelda et al. 2010; Sohn et al. 2012), we work
exclusively with relative proper motions. Zero proper motion
Ky o is defined as the median observed rate of positional change
for bulge objects across the entire field of view, without any
selection for metallicity. The sample defining this proper-
motion reference consists of stars that are not saturated in the
deep exposures (these objects are at the bulge MS turnoff
and fainter).13

Cal5 conducted extensive artificial-star tests to estimate
measurement uncertainty in the proper motions, with artificial
objects injected with proper motions into individual measure-
ment frames to characterize the random proper-motion
uncertainty as a function of apparent magnitude. Including
random measurement uncertainty, random intrinsic uncertainty
due to tracer star motion, and estimated residual distortion, the
proper-motion uncertainty per coordinate is approximately
<0.12 mas yr~! over the apparent magnitude range of interest
(see Appendix A for details), easily sufficient to measure
relative stellar motions in this field.

The result is a set of 339,193 objects with ACS/WFC
positions, apparent magnitudes, and proper-motion estimates,
all with uncertainties characterized as a function of apparent
magnitude. Exploitation of these data is presented in Calamida
et al. (2014, 2015) and Kains et al. (2017).

2.2. WFC3 Photometry from the WFC3 Bulge Treasury
Project (BTS)

The WFC3 Bulge Treasury Project (BTS; program
GO-11664; PI T. M. Brown) visited four fields in the bulge,
with WFC3, including the SWEEPS field. The observations are
described in detail in Brown et al. (2010); here we briefly
summarize the characteristics relevant for the present paper.

In each field, observations were taken in UVIS/F390W
(11,180 s), UVIS/F555W (2283 s), UVIS/F814W (2143 s),
IR/F110W (1255 s), and IR /F160W (1638 s), with IR images
(field of view 123" x 136") dithered in order to fully cover the
UVIS observations (field of view 162" x 162"). Good overlap
was achieved with the SWEEPS ACS/WFC observations;
nearly all the BTS objects in this field also fall within the
SWEEPS ACS/WEFC field of view (Figure 1).

Version 1 of the BTS catalog,'* which we use here, employed
photometry and positions measured with daophotII (Stetson
1987; Brown et al. 2010). The resulting BTS v1 catalog lists
400,424 objects in the Sagittarius window with reported
apparent magnitude in any of the BTS filters. Of these, 52,596

13 Some notational clarification is in order: although all the proper motions are
reported relative to the average motion of a sample defined by the astrometric
signal-to-noise ratio, we follow standard practice in this subfield (e.g., Kuijken
& Rich 2002) and refer to these relative proper motions simply as “proper
motions” p = (4, ), rather than Ap, to avoid cluttering the notation.

14 A second version of the BTS catalog was released when the present work
was at an advanced stage. This second catalog version is discussed in
Appendix H: while the measurement techniques are improved over the first
version, the differences do not impact the results presented in this work.
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Table 2
Vertices of the Selection Polygon in the SWEEPS CMD That Was Used to
Select Objects for Further Proper-motion Study

(F606W-F814W) F606W
(mag) (mag)
1.40 24.80
1.54 21.30
1.34 20.50
1.17 23.80

Note. See Section 3.2 for discussion.

have measurements in all five of the BTS filters that are required
to construct [¢], [m] estimates.

3. Analysis

To construct the “metal-rich” and “metal-poor” rotation
curves, we used the BTS photometry to draw “metal-rich” and
“metal-poor” samples by use of [¢], [m] and used the SWEEPS
data to estimate the relative photometric parallaxes and proper
motions. Within each sample, the relative photometric paral-
lax (7') for a given star is defined as the apparent magnitude
offset from the fiducial ridgeline in the SWEEPS CMD for the
sample. The SWEEPS deep (F606W, F814W) CMD was used
to estimate 7’ because this choice of filters is relatively
insensitive to metallicity variations when compared to, for
example, the (C, V-I) CMD presented in Brown et al. (2010).

This section is organized as follows: Section 3.1 describes the
merging of the SWEEPS and BTS catalogs, with the sample
selection for proper-motion study discussed in Section 3.2 and
the calculation of the photometric indices [¢], [m] shown in
Section 3.3. These indices require a prescription for extinction,
discussed in Section 3.4. The classification into “metal-rich” and
“metal-poor” samples is discussed in Section 3.5. The kinematic
behavior of the two samples was then measured in two ways; a
simple 1D characterization of the longitudinal proper motion
iy is indicated in Section 3.6, while a more sophisticated
dissection of the velocity ellipse with relative photometric
parallax 7’ is shown in Section 3.7.

3.1. Merging the ACS/WFC and BTS Catalogs

The BTS and SWEEPS catalogs were first cross-matched by
equatorial coordinates. Although the absolute pointing of
HST is accurate only to ~0”1 (Gonza%a et al. 2012), with
F814W observations in both data sets, ' matching of similar
objects in both catalogs is straightforward (using F555W and
F606W measurements in WFC3 and ACS/WFC, respectively,
to refine the matches). For the first round of matching, a kd-tree
approach was used to cross-match on the sphere, with a 5-pixel
radius used for initial matching. In the second round, pixel
positions in the two catalogs were cross-matched and fit
using a general linear transformation for objects in the
18 < F814W < 26 range. While the population of good
matches transitions to a background of mismatched objects at
a radius of ~2 pixels and larger, the vast majority of cross-
matches were somewhat better, falling within a 1-pixel
matching distance. The matching process resulted in a list of

15 Small differences in effective bandpass of the F814W filter between
ACS/WFC and WFC3 do not significantly impact the cross-matching.
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Figure 2. Region selection in the SWEEPS CMD. The dashed polygon shows
the selection region for objects selected for proper-motion study (see
Section 3.2 and Table 2). To illustrate typical stellar parameter ranges for
this sample, also overplotted is a 10 Gyr isochrone at [Fe/H] = —0.09 from
the “canonical” «-enhanced set within the BaSTI library (Pietrinferni
et al. 2004, using the “F05” opacities of Ferguson et al. 2005). The isochrone
is plotted twice, color-coded to show log(g) (left color bar) and Teg (right color
bar) and offset for clarity, with color minima and maxima set to the range of
parameters across the sample of interest. See Sections 3.2 and 3.3.

47,537 objects with proper motions and seven-filter apparent
magnitudes, with uncertainty estimates for all quantities.

3.2. Sample Selection for Proper-motion Study

Two aspects of the sample selection are worth highlighting.
First, the selection region in the (F606W, F814W) CMD was
chosen to be well clear of the MS turnoff, subgiant branch, and
giant branch, to encompass as many stars as possible with good
proper-motion measurements, and finally to capture a region
over which the MS for a given population is reasonably free of
curvature in the CMD. This selection region is shown in
Table 2 and Figure 2. Second, the photometric metallicity and
temperature indices include coefficients that amplify measure-
ment uncertainty (particularly F110W and F160W, which
appear in the temperature index [t]). For this reason, objects
were only selected for further study for which all apparent
magnitude uncertainties in the photometric catalog are smaller
than 0.1 mag.

The successive selection steps isolating the sample for
further study are detailed in Table 3. Of an initial sample of
339,193 SWEEPS objects and 400,424 BTS objects, 9700
(~2.9%) were retained for further analysis.

3.3. Production of [t], [m] for the Proper-motion Sample

The photometric indices [t], [m] take the following form
(Brown et al. 2009):

(=W -J)—a(l — H)
[m]=(C=V) =BV -D, (0

with « = E(F555W — F110W)/E(F110W — F160W) and
0 = E(F390W — F555W) /E (F555W — F814W), all of which
have a dependence on stellar parameters. The median values of
these stellar parameters for the proper-motion sample (Tofr ~
4800 K and log(g) = 4.6) were estimated from an isochrone
chosen to overlap the observed sample (see Figure 2; several
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combinations of metallicity, age, and extinction were tried,
indicating that the parameter range for this sample is roughly
4200K < Tor < 5200K and 4.5 <log(g) < 4.7).

3.4. Extinction Estimates for Reddening-free Indices

The factors «, [ are three-filter extinction ratios (Brown
et al. 2009). Synthetic photometry was used to estimate the
relationship between reddening and extinction for the objects
of interest and to generate reddening vectors in the various filter
combinations of interest. For a range of E(B — V) values,
pysynphot was used to generate synthetic stellar spectra, and
the run of 4x against E(B — V) was fit as Ay = kxE(B — V)
separately for all seven filters used in this study, over the range
0.0 < EB — V) < L.5. The calculation was performed for
Tete, log(g) appropriate to the SWEEPS CMD region chosen
for proper-motion study (Figure 2). The process was repeated
for low- and high-metallicity objects to estimate sensitivity of
the extinction prescription to metallicity variation within the
sample selected for further study, and for (T, log(g)) for
objects at the median, minimum, and maximum Z¢g within this
sample to estimate spread of «, (3 along the sample.

This procedure requires a prescription for the extinction law
toward the bulge. This extinction law appears to be somewhat
nonstandard and strongly spatially variable, with some doubt in
the literature about whether a single-parameter model can
accurately reproduce observed behavior from the visible to the
near-infrared (e.g., Nataf et al. 2016, and references therein).
As the [¢], [m] indices use photometry over a very broad
wavelength range (CVIJH, or A ~ 350-1700 nm), systematic
uncertainties in the extinction prescription will in turn impact
any inferences about the underlying metallicity distribution
(this is one reason why we use [¢], [m] only to classify objects
by relative [Fe/H] estimates).

To make progress, we adopted a single-parameter reddening
law, but with ratio of selective to total extinction Ry = 2.5, as
suggested by the investigations of Nataf et al. (2013)."® As this
value is not among the standard parameterizations available in
pysynphot, the coefficients Ay /E(B — V) for the seven
filters were estimated for Ry = 2.1 and Ry = 3.1 and linearly
interpolated to Ry = 2.5.

Table 4 shows the ky estimates for each filter, along with the
coefficients «, [ in the [f], [m] indices. These are quite
different from the MS coefficients reported in Brown et al.
(2009), as expected since here we are targeting a specific
population some way beneath the MS turnoff and have used a
different prescription for extinction.

For a given choice of Ry the variation of all extinction-
relevant quantities appears to be small within the sample of
interest; a, (3 each vary by <0.1 between the two abundance
sets tested and, for a given abundance, by <0.02 across the
T.ir range of this sample. We adopt («, §) = (6.44, 1.10) for
the rest of this work.

3.5. Classifying Samples by Relative Metallicity

The resulting ([t], [m]) distribution of objects is shown in
Figure 3. Two concentrations are apparent: one near ((f],

16 As a check, the entire kinematic analysis of Sections 3 and 4 was also
performed using Ry = 3.1. Although the mean position of objects in the
[t], [m] diagram shifts slightly when Ry = 3.1 is adopted, the kinematic trends
for the “metal-rich” and “metal-poor” samples are similar to the trends when
Ry = 2.5 is used.
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Table 3
Selection Steps Used to Isolate the Proper-motion Sample for Further Study
Selection N(remaining) N(removed)
SWEEPS sample (Calamida et al. 2014) 339,193
Cross-matched with BTS 55,666 283,527
BTS measurements in all filters 47,537 8129
Within SWEEPS CMD selection region 10,225 37,312
Omag(ACS/WFC) < 0.1 mag 10,222 3
Omag(WFC3 /UVIS) < 0.1 mag 10,209 13
Omag(WFC3/IR) < 0.1 mag 10,145 64
Clipping far outliers in [¢], [m] 9,700 445

Note. The cuts are cumulative, reading from top to bottom. The third step
includes selecting out any rows for which any of the seven phometry and two
proper-motion measurements are listed as a “bad” value in either the
SWEEPS or BTS catalogs. In practice, this limits the sample to
18.5 < F606W < 27.5. The SWEEPS CMD selection region is shown in
Figure 2. For the three instrumental configurations listed, objects must show
photometric uncertainty <0.1 mag in all relevant filters: (F606W, F814W)
for ACS/WEC, (F390W, F555W, F814W) for WFC3/UVIS, and (F110W,
F160W) for ~WFC3/IR.  Objects passing [t], [m] clipping  satisfy
—350 <[f] £ —1.00 and —0.60 < [m] < 0.40. See Section 3.2 for
discussion.

[m]) = (2.0, 0.15), and a second, more elongated concentra-
tion with major axis angled at about —45° in Figure 3, centered
near (t], [m]) =~ (=2.2, —0.1).

To classify objects by relative metallicity and thus draw
“metal-rich” and “metal-poor” samples for further study, the
population highlighted in Figure 2 was characterized as a
Gaussian Mixture Model (GMM) in ([t], [m]) space, and
members of the “metal-poor” and “metal-rich” samples were
identified by their formal membership probability W (see
Appendix B). The number K of mixture components to use was
determined by increasing K until the characterization stopped
improving (see Appendix B.2 for details). At least two
components seem to be required, but a four-component mixture
model appears to provide the best representation of the
[t], [m] distribution.

We therefore adopt a four-component GMM to characterize
the observed distribution in [¢], [m] space for the rest of this
work. Table 5shows the GMM parameters, while Figure 4
presents the model components visually. The two most
significant components correspond roughly to visually apparent
concentrations in Figure 3, together accounting for 91% of the
mixture; these form our “metal-rich” and “metal-poor” sam-
ples. The remaining two components, making up about 6% and
3%, do not correspond to any physically obvious population.
These two components might represent populations of outlier
objects, or structure in the background in (7], [m]). We retain
these low-level components in the GMM for all subsequent
work using the BTS catalog, but we do not interpret them as
representing any intrinsic population component.

This four-component GMM provides the basis for our
classification of objects by relative metallicity, with “metal-
rich” and “metal-poor” objects corresponding to the two most
significant components of the GMM (Table 5)."”

7 We are not at this stage suggesting that the bulge sample of BTS is
intrinsically bimodal in metallicity (as opposed to a continuum of populations;
e.g., Gennaro et al. 2015; Debattista et al. 2017). Instead, we are using the
photometric indices [f], [m] to draw samples near the extremes of relative
abundance.



THE ASTROPHYSICAL JOURNAL, 858:46 (53pp), 2018 May 1

Clarkson et al.

Table 4
Estimates of ky = Ay /E(B — V) and Derived Parameters

CCMB89, CCMB9, CCMB89, CCMB9, CCM89, CCMB89,

Ry =2.1: Ry =2.1: Ry =3.1: Ry = 3.1 Ry =12.5: Ry =2.5:
Config log(Z2) = 3.3 log(Z) = —1.6 log(Z2) = 3.3 log(Z2) = —1.6 log(Z) = 3.3 log(Z2) = —1.6
ACS/WFC1 /F606W 1.847 1.849 2.786 2.788 2.222 2.224
ACS/WEC1/F814W 1.064 1.064 1.821 1.822 1.366 1.367
WFC3/UVIS1/F390W 3.507 3.492 4.489 4.475 3.899 3.885
WEFC3/UVIS1/F555W 2.183 2.186 3.167 3.171 2.576 2.58
WEFC3/UVIS1/F814W 1.074 1.075 1.833 1.834 1.377 1.378
WEFC3/IR/F110W 0.560 0.558 1.025 1.021 0.746 0.743
WFC3/IR /F160W 0.345 0.345 0.635 0.634 0.461 0.460
(F606W-F814W)scs/weci 0.784 0.785 0.965 0.966 0.856 0.857
« 7.55 7.64 549 5.56 6.42 6.49
5] 1.19 1.18 0.99 0.98 1.10 1.09

Note. Here T.¢ = 4800.0 and log(g) = 4.59. For convenience, the scale factor for the SWEEPS color index is also shown. The quantities «, § give the extinction
ratios relevant for [¢], [m]. Specifically, « = E(F555W — F110W)/E(F110W — F160W) and 3 = E(F390W — F555W) /E(F555W — F814W). See Sections 3.3

and 3.4.
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Figure 3. [t], [m] distribution of the population selected for proper-motion
study. In the main panel, green points show individual objects, and black
contours show the smoothed representation as a 2D kernel density estimate
(KDE) with 10 levels plotted. Marginal distributions in [¢] and [m] are shown
in the top and right panels, respectively. Typical estimates for measurement
uncertainty in this space are presented in Figure 18. See Section 3.3.

A rough estimate for the centroid [Fe/H] values of the two
samples may be drawn by charting [Fe/H] contours in the
[¢], [m] diagram for synthetic stellar populations and inter-
polating to estimate [Fe/H] at the [¢], [m] locations of the
corresponding GMM component centroids (see Appendix F.1
for more details on the synthetic stellar populations used). The
GMM component centroids presented in Table 5 correspond to
[Fe/H]o ~ +0.18 for the “metal-rich” sample (using scaled-to-
solar isochrones) and [Fe/H]y, ~ —0.24 for the “metal-
poor” sample (using a-enhanced isochrones for this model
component). These centroids are roughly consistent with values
suggested from spectroscopic surveys (e.g., Hill et al. 2011;
Zoccali et al. 2017).

Table 5
Parameters of the Gaussian Mixture Model in [¢], [m] Space for Stars beneath
the Main Sequence Selected for Further Study

k Name 7 [t1o [m]o 0 [2tJ 1] 0 [sz [m] Ulth [m]
(mag) (mag) (mag’) (mag’)  (mag’)
0 “Metal- 0.557 —2.18 —0.09 0.0479 0.0143 —0.00742
poor”
1 “Metal- 0.358 —1.97 0.15 0.0384 0.0043 —0.00187
rich”
2 0.026 —1.34 —0.05 0.0153 0.0397 0.00886
3 0.059 —2.87 0.01 0.0573  0.0255 0.00240

Note. Reading left to right, columns indicate the component index «, its label
(if any), its (rounded) mixture fraction ¢, the two components of its centroid,
and the three unique components of the covariance matrix V;. See Section 3.5.

For an object to be classified with the “metal-rich” or “metal-
poor” sample, it must show formal membership probability
Wi = 0.8 (see Equation (3); note that an object need not be
classified with either sample when there are four model
components). The shading in Figure 4 visualizes the member-
ship probabilities Wy, associated with each mixture component.
The threshold W, > 0.8 was chosen as a trade-off between
sample purity (typical objects should not fall into more than
one model component at the chosen threshold) and the need to
have a sufficient sample size (at least a few thousand) to permit
the dissection of the proper motions by relative photometric
parallax with sufficient resolution to chart the rotation curves.

Assigning relative photometric parallax (7’) is the final step
required before proper-motion rotation curves can be charted,
with reference to fiducial ridgelines for the “metal-rich” and
“metal-poor” samples. The fiducial ridgelines themselves were
determined by a simple empirical fit to the density of each
sample in the SWEEPS CMD. A second-order polynomial
adequately represents the median samples and allows very
rapid evaluation of relative photometric parallax. Figure 5
shows the adopted fiducial ridgelines for the “metal-rich” and
“metal-poor” samples in the SWEEPS CMD, while their
parameters are given in Table 6.
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] t

Figure 4. [t], [m] sample color-coded by membership probabilities Wy

(Equation (3)) for the £’th model component in the GMM characterization of
the observed distribution. The 1o ellipse for the £’th model component is
overplotted in each case as a colored ellipse. Reading clockwise from top left,
panels show the “metal-rich,” the “metal-poor,” and the two background
components. See the discussion in Section 3.5.

3.6. Proper-motion Rotation Curves

Having drawn “metal-rich” and “metal-poor” samples from
the BTS photometry, along with fiducial sequences in the
SWEEPS CMD for the two samples, the “metal-rich” and
“metal-poor” rotation curves can be charted. Figure 6 shows
the raw distribution of longitudinal proper motion y; and
relative photometric parallax for the “metal-rich” and “metal-
poor” samples, with trends presented in Figure 7.

All proper motions in this work were measured relative to
the same proper-motion zero-point, defined without reference
to any selection by metallicity (Section 2.1). To the extent that
the “metal-rich” and “metal-poor” samples trace bulge objects
with different spatial distribution and/or kinematic behavior,
however, the average proper motions of bulge objects in the
two samples might differ.

We therefore estimated the proper motion corresponding to the
fiducial sequence for each sample. For this ‘“central” proper
motion, we used the median proper motion over those sample
members with relative photometric parallax between A7’ and
An’_magnitudes nearer to and farther than the fiducial,
respectively.'® We adopted Ar', = 0.05, corresponding roughly
to AD = 0.18 kpc at the distance of the bulge (Section 4.1). The
central proper motion for the “metal-rich” sample is then
(> 1) = (+0.019, 4-0.19) masyr ' from 381 surviving
objects, while for the “metal-poor” sample we found
(1 )p = (—0.12, +0.32)  masyr ' from 290 surviving
objects. The proper motion corresponding to the “metal-rich”
fiducial was thus found to be offset from that of the “metal-
poor” fiducial by about (g, Mb)OMR—MP ~ (+0.14, —0.13)
mas yrfl.

'® The near limit An’ ‘was set from the far limit Ar', using the relation
Arn! = 5logo(2 — 10474+/5), corresponding to a symmetric selection by
distance.
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Figure 5. Ridgelines for the “metal-rich” and “metal-poor” samples. The
grayscale shows the ACS/WFC (F606W, F814W) Hess diagram for the larger
SWEEPS sample. Objects falling within the region of interest for our kinematic
study are presented as points, color-coded by “metal-rich” (red) or “metal-
poor” (blue). The empirical median-sample ridgelines for the “metal-
rich” (dark red solid line) and “metal-poor” (blue dashed line) are overlaid. See
Section 3.5 and Table 6.

Table 6
Ridgeline Parameters in the SWEEPS Color-Magnitude Diagram, for the
“Metal-poor” and “Metal-rich” Samples

k Name ap ay ar
(mag) (mag™")

0 “Metal-poor” —16.906 48.557 —14.954

1 “Metal-rich” —5.720 33.458 —10.293

Note. These purely empirical ridgelines are used to rapidly evaluate
photometric parallax for objects in each sample and take the form
F814W = E,—ajxf, with x the (FOO6W — F814W) color. See Section 3.5 for
discussion.

3.7. Proper-motion Ellipse Dissected by Relative
Photometric Parallax

With a difference in rotation curves suggested from the
behavior of p; against relative photometric parallax, the next
step is to chart the distance variation of the (/, b) proper-motion
ellipse. The approach shares several similarities to that reported
in ClO8; relative photometric parallaxes were assigned to each
star with reference to the fiducial sequence (appropriate for the
metallicity sample with which the star was identified) and the
sample partitioned into bins of relative photometric parallax 7/,
with bin widths adjusted so that each bin has the same number
of objects.

The proper-motion distribution within each bin was fit as a
2D Gaussian, with centroid proper motion p, and covariance
matrix V,,. Uncertainties in fitted quantities were estimated by
parametric bootstrapping: synthetic samples for each bin were
drawn from the best-fit model, perturbed by the estimated
proper-motion uncertainty, and the distribution of recovered
parameters over the bootstrap trials was adopted as the
estimated parameter uncertainties. Because this process can
be sensitive to outliers, a single pass of sigma-clipping was
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Figure 6. Raw distribution of g, against relative photometric parallax (), for
the “metal-rich” (red) and “‘metal-poor” (blue) populations. The near side of
the population is to the left in both panels. The points themselves are illustrated
by colored scatterplots in the main panels, with density contours indicated in
gray scale. The top and right panels show the marginal distributions of 7/ and
4, respectively. See Section 3.6.

applied to the proper-motion sample within each distance
bin using a 430 threshold; this typically removed roughly
1%—-2% of the points per bin, with the exeption of the most
distant 7’ bin (see Tables 16 and 17 in Appendix I).

Several improvements were made over the analysis reported
in ClO8. For example, rather than subtracting the estimated
proper-motion uncertainty in quadrature from the model
covariances after fitting, the “extreme-deconvolution” formula-
tion of Bovy et al. (2011) was used, which incorporates
estimated measurement uncertainty as part of the fitting process
(see Appendix B). We experimented with a multicomponent
GMM within each 7’ bin for each sample but found a single
component adequate (see also Section 5.8). The estimates of
proper-motion uncertainty themselves have also been improved
compared to ClO8, both in the characterization of random
uncertainty through the artificial-star tests of Cal5 and through
improved characterization of residual relative distortion (Kains
et al. 2017). Details of the adopted uncertainty estimates are
presented in Appendix A; for the apparent magnitude range of
interest, the total proper-motion uncertainty estimates
(6 < 0.12 mas yrfl) are much smaller than the intrinsic

~

proper-motion dispersion of the bulge (~3 mas yr ).

4. Results

The trends in observed motions are shown graphically in
Figures 8-10, while Figure 11 shows the trends after conver-
sion from relative photometric parallax 7’ and proper-motion
1 to distance D and velocity v. This information is presented
in tabular form in Appendix I. Section 4.1 presents the rotation
curves, both observed (i.e., 7/, w)and after conversion
(to D, v), and shows a simple characterization of the trends.
Section 4.2 presents the evolution of the velocity ellipse with
distance along the line of sight.
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Figure 7. Proper-motion rotation curves. The “metal-rich” sample is denoted in
red in the top panel, the “metal-poor” sample in blue in the bottom panel. The
population is broken into bins in relative distance modulus and the median
value fz; determined for each bin (triangles). Faint solid lines show a third-order
smoothed spline approximation fit to the binned proper motions 7z;, while
squares indicate equally spaced evaluations of the spline approximation over
the range of relative moduli (—1.0 < (m — my) < +1.0). See Section 3.6.

4.1. Distance Conversion and Rotation Curves for the “Metal-
rich” and “Metal-poor” Samples

Figure 11 presents the rotation and dispersion curves of the
“metal-rich” and “metal-poor” samples expressed in terms of
(D, v). The conversion of these quantities from the measured
(7', p) requires the reference distance D, corresponding to
the fiducial sequences for the two samples. The reference
distance was set by taking literally the distance modulus
(m — M)y = 14.45 suggested by studies of the SWEEPS
CMD (Cal4), which in turn suggests reference distance
(Do = 7.76 kpc). We assigned this reference distance to both
the “metal-rich” and “metal-poor” samples (a choice we
examine critically in Section 5.4).

Consistent with the simple treatment in Figure 7 and
Section 3.6, the “metal-rich” sample shows a higher-amplitude
rotation curve than does the “metal-poor” sample, with both a
steeper slope and about a factor of ~2 greater difference in
mean transverse velocity (v;) between the near side and far side
of the bulge than for the “metal-poor” sample.

To quantify the rotation curve discrepancies between the
samples, a simple straight-line model was fit to their rotation
curves for distances close to the fiducial for each sequence.
This interval was estimated separately for the two samples
since their rotation curves appear to level off at different
distances from the fiducial (Figure 11). For the “metal-rich”
sample the gradient was estimated over the interval
Dy £ 0.80kpc in the (D, v;) curve (corresponding to
—0.24 mag < 7' < 40.21 mag). The rotation curve of the
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Figure 8. Variation of proper-motion centroid with relative photometric
parallax, for “metal-rich” (red triangles) and “metal-poor” (blue circles)
samples, using a binning scheme with 200 objects per bin. The top row
shows the proper-motion centroid in Galactic longitude; the bottom row shows
the proper-motion centroid in Galactic latitude. Error bars show lo
uncertainties from parametric bootstrapping, using the best-fit parameters and
measurement uncertainties to generate 1000 trial data sets for each distance bin.
See Section 4.1.

“metal-poor” sample remains sloped over a broader range,
so the fitting interval Dy &= 1.4kpc was used (so —0.44
mag < 7' < 40.36 mag). For both samples the rotation curve
amplitude was estimated from the intervals where the rotation
curves level off, covering two to three bins each outside the
sloped region (Figure 12 indicates the regions used to estimate
the rotation curve slopes and amplitudes). The 1o ranges of
() and (v;) from the parametric bootstrap trials were used as
estimates of measurement uncertainty in each distance bin, and
the trends were fitted to each of the (7', (1)) and (D, (v;))
rotation curves separately (rather than transforming the proper-
motion trends into velocity trends after fitting). We did not
attempt to deproject velocities to circular speeds (as discussed
in CI08) but merely attempted to characterize observed trends.

Figure 12 and Table 7 show the results. The ratio of the
gradients B was found to be (Byir /Bmp); = 3.70 + 0.68, while
the ratio of amplitudes A is (Avr /Amp) = 2.29 £ 0.35. Thus,
a ratio in rotation curve slopes was detected at approximately
5.40, while for the velocity amplitude the ratio was detected at
roughly 6.50.

The rotation curves in Galactic latitude (Figure 8, bottom
panel) visually suggest gentle trends from near side to far side,
consistent with previous measurements (e.g., ClO8, Soto
et al. 2014). Table 8 reports the straight-line characterization
of the Galactic latitude rotation curves, where here we
characterized the trend as a straight-line fit within +2.0 kpc
from the fiducial distance Dy. The behaviors of the two samples
in p, are statistically similar, with gradient ratio (Byr /Bmp)y =
0.90 £ 0.87. We do not consider this to represent a secure
detection of differing rotation curves in the direction of
Galactic longitude.
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Figure 9. Semimajor (top) and semiminor (bottom) axis lengths for the proper-
motion ellipse. Symbols, colors, and error bars as for Figure 8. See Section 4.1.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
22 _ | | | | | | [

"Metal-poor"
1 "Metal-rich"

S |

Axis-ratio a/b

Ellipse position angle (°)
o

-0.5 0.0 0.5

-1.0
Relative photometric parallax (mag)

-1.5

Figure 10. Variation of the proper-motion ellipse axis ratio (top) and the
position angle of its major axis (bottom) as a function of relative photometric
parallax. Position angle 6 = 0° would mean that the proper-motion ellipse
major axis aligns with the Galactic longitude axis. Symbols as in Figure 8, with
the “metal-poor” sample shown more faintly to avoid cluttering the plots. See
Section 4.1.

4.2. Proper-motion Ellipse Morphology and Amplitudes

The velocity dispersion profiles (measured as major- and
minor-axis lengths of the proper motion and velocity ellipsoids;
Figures 9 and 11) also show differences between the samples.
Both samples show a broadly centrally peaked velocity
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Figures 8 and 9, except distance moduli have been converted to line-of-sight distances and proper motions converted to velocities in km s~'. See Section 4.1.
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Figure 12. Straight-line fits to the inner region of the longitudinal rotation
curve along the line of sight, after conversion to velocities and physical
distances. The comparison sequences for both samples are assumed to lie at
distance Dy = 7.76 kpc. The filled regions indicate +1.00 regions for each
sample. The horizontal shaded regions show the intervals assumed to be “flat”
to estimate the rotation amplitude for each sample. See Section 4.1 and Table 7.

dispersion pattern against line-of-sight distance (Figure 11),
with the “metal-rich” sample showing a narrower peak,
particularly in the major-axis dispersion. The “metal-rich”
sample also shows generally lower velocity dispersion by
~10%, particularly in terms of the velocity ellipse minor axis.

Consistent with previous studies (e.g., Soto et al. 2014), the
proper-motion ellipse appears to be weakly elongated, with the
“metal-rich” population possibly the more elongated of the two
samples (with axis ratio b/a ~ 129 £0.05 at 7' =0
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compared to b/a ~ 1.13 £ 0.05; see the top panel of
Figure 10). However, the two axis-ratio trends show consider-
able bin-to-bin scatter.

The proper-motion ellipse major-axis position angle also
shows trends with relative photometric parallax, although
possibly at lower statistical significance than the trends reported
in CI08 despite a much longer time baseline for proper motions
(Cal4). This reduced significance may be due to the reduced
sample size admitted by the cuts in [¢], [m] employed in this
work. It may be that only the “metal-rich” sample substantially
shows the proper-motion ellipse tilt with distance, with position
angle rising to the 20°~40° range (this tilt is strongly influenced
by projection effects; see Section 5.1 and particularly
Equation (2) of Cl08). Because the “metal-poor” population
tends to be less elongated, its position angle trends are also
detected at lower significance.

The very nearest relative photometric parallax bins show
behavior consistent with a foreground population dominated by
Galactic rotation. This seems particularly clear for the “metal-
rich” sample, which shows a much more strongly elongated
proper-motion ellipse for the nearest bin (a/b =~ 2.0 + 0.11)
and position angle consistent with zero (consistent with
differential rotation in Galactic latitude).

5. Discussion

The trends indicated by the union of the BTS and
SWEEPS data sets, particularly the rotation curves (presented
in Figures 7, 8, and 11), are quite striking. The “metal-
rich” rotation curve appears to show systematically greater
rotation amplitude than the “metal-poor” sample, shows a
greater degree of central concentration along the line of sight
(see Figure 11, as well as the raw distributions in Figure 6),
and, with the exception of the middle distance bins, may show
systematically lower velocity dispersion (Figure 11).
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Table 7
Trend Parameters for the Inner Bulge Region

Sample Gradient (p;) Amplitude (1) Gradient (v;) Amplitude (v;)
(mas yr’1 mag’l) (mas yr’l) (km s~} kpc’l) (kms™h

“Metal-poor” (MP) —1.78 £ 0.23 0.48 + 0.07 —18.6 + 2.66 18.3 + 2.58
“Metal-rich” (MR) —6.85 + 0.73 1.16 + 0.07 —68.9 + 8.04 419 +2.52
MR-MP —5.07 £ 0.77 0.68 + 0.10 —50.3 £ 8.5 23.6 £+ 3.6
MR/MP 3.85 + 0.64 242 + 0.38 3.70 £+ 0.68 2.29 + 0.35
Note. See Section 4.1.

Table 8 produce an apparent rotation curve discrepancy where none

Gradient of Straight-line Fits in Galactic Latitude, for Stars within 2.0 kpc of
the Fiducial Distance Dy = 7.76 kpc Adopted in This Work

Sample Gradient (p;) Gradient (v;)

(mas yr’1 mag’l) (km s~} kpc’l)
“Metal-poor” (MP) 0.26 + 0.25 42 +2.76
“Metal-rich” (MR) 0.24 + 0.28 3.8 +£2.65
MR-MP —0.02 +0.38 —04 +38
MR/MP 0.92 + 1.40 0.90 + 0.87
Note. See Section 4.1.

Before attempting to interpret the trends, however, we
examine the magnitude and impact of several potential
systematics that might bias the samples, whether by amplifying
or even artificially generating the apparent differences in
rotation curve (Section 5.1), or by reducing them as a result of
mixing in the ([¢], [m]) space used to draw the “metal-rich” and
“metal-poor” samples (Section 5.2). The impact of extinction
variations along the line of sight, including additional
extinction on or past the far side of the bulge, is discussed in
Section 5.3. Systematic uncertainties in the final velocity
rotation curves due to the proper-motion zero-point and fiducial
distance are discussed in Section 5.4.

In Section 5.5 we address the question whether the bulge
rotation curve from proper motions indeed depends on relative
abundance, and we briefly assess trends in proper-motion
dispersion in Section 5.6. Implications of the relative photo-
metric parallax distributions for the spatial distributions of the
“metal-rich” and “metal-poor” samples are discussed in
Section 5.7. Because a metal-poor kinematically hot “classical
bulge” and/or “halo” bulge component may be present in the
inner Milky Way (perhaps more likely among “metal-poor”
objects), we attempt in Section 5.8 to dissect each of the
“metal-rich” and “metal-poor” populations into two proper-
motion components per sample. Finally, Section 5.9 discusses
the implications of our results for the traditional selection of a
“clean-bulge” sample using cuts on longitudinal proper
motion ;.

5.1. Difference Amplification by Photometric Parallax Mixing

Differences in apparent magnitude distribution other than
those due to distance spread would contribute to differences in
the inferred n’ distributions for the “metal-rich” and “metal-
poor” samples. If sufficiently severe, this differential blurring
in 7' might cause two intrinsically identical rotation curves to
be erroneously measured as discrepant. In the sense of our
findings, the “metal-poor” sample might be artificially blurred
in 7/ compared to the “metal-rich” sample, which would
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were present.

Several phenomena might lead the “metal-poor” sample to
exhibit greater apparent magnitude scatter than the “metal-rich”
sample. First, since the “metal-poor” ridgeline in the SWEEPS
CMD is slightly fainter than the “metal-rich” ridgeline, the
“metal-poor” objects may be subject to increased photometric
uncertainty. Second, at least in principle, if the extinction
distribution experienced by the two samples were in some way
different, this could lead to a broader apparent magnitude
distribution for the “metal-poor” sample. Third, differences in
binary fraction between the samples might cause the relative
photometric parallax distribution of the two samples to differ,
although the nature, magnitude, and direction of such effects
may be complex and indeed depend on the class of binaries
probed (e.g., Gao et al. 2014).

Finally, differences in the intrinsic photometric scatter
between the “metal-rich” and ‘“metal-poor” samples might
amplify differences between the rotation curves. Our own
VLT spectroscopy, as well as spectroscopic campaigns from
the literature (e.g., Hill et al. 2011; Zoccali et al. 2017),
suggests that the [Fe/H] spread for the “metal-poor” popula-
tion is greater than for the “metal-rich” population, which
would in turn contribute greater 7’ scatter in the “metal-
poor” population.

We have performed simple Monte Carlo tests to determine
whether perturbations in the inferred distance distribution can
be responsible for the differences in rotation curves between
“metal-rich” and “metal-poor” samples. Appendices D and E
provide details.

In the course of investigating the impact of the differential
[Fe/H] distribution on the 7’ distribution, it became apparent
that the BaSTTI set of artificial stellar population methods used
to generate synthetic [Fe/H] distributions was (at the time of
this work) imposing an apparently artificial population
truncation. Appendix F provides details, with the method we
adopted to mitigate this selection effect discussed in
Appendix E.

Perturbations were tested as a result of additional photo-
metric uncertainty or differential extinction variations
(Appendix D.1), differences in the fraction of unresolved
binaries (Appendix D.2), and differences in the photometric
parallax spread caused by differing intrinsic spreads in
metallicity (Appendix E). In all scenarios, either the effect is
too small to bring the rotation curves into agreement (for
binaries), or the required perturbation is too large to have gone
unnoticed in previous studies (for extinction), possibly by an
order of magnitude (for photometric uncertainty). The strongest
single contributor of relative photometric parallax mixing is
intrinsic difference in metallicity spread between the samples;
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this likely contributes differential distance mixing up to one-
third the amount required to artificially reproduce the observed
discrepancy in rotation curves. Since independent sources of
additional photometric scatter would presumably add in
quadrature, their combination is very unlikely to be sufficient
to bring about the observed discrepancies in trends.

We therefore conclude that differential distance scatter is not
responsible for the difference in rotation curves or
7' distributions, due to additional photometric uncertainty,
differential extinction, differences in the unresolved binary
populations, or differences in metallicity spread between
samples.

5.2. Difference Reduction by Sample Cross-contamination

While blurring in relative photometric parallax would tend
to artificially increase the difference between trends in the
“metal-rich” and “metal-poor” samples, cross-contamination of
the samples in ([¢], [m]) would tend to artificially reduce these
differences. While we have used reasonably conservative
thresholds in drawing our “metal-rich” and “metal-poor” sam-
ples, genuinely metal-rich objects might be moved into the
“metal-poor” sample by measurement uncertainty, and
vice versa.

Because of the complexities involved in rigorous reconstruc-
tion of the observed distributions (e.g., Gennaro et al. 2015), full
exploration of this cross-contamination is deferred to future work.
We have performed a simple Monte Carlo contamination test for
the formal membership probability threshold Wy > 0.8 used in
this work (Appendix G). Under the assumptions of that test, we
find that the “metal-rich” sample is contaminated at the ~5%
level (mostly from the “metal-poor” sample), while the “metal-
poor” sample is contaminated at the <1% level (mostly due to
the “metal-rich” sample, but with some contribution from
background component k = 3in Table 5). This is not severe
enough for the observed low-amplitude “metal-poor” rotation
curve to be due to sample contamination from a small population
of objects following the kinematics of the “metal-rich” sample.

5.3. Trend Modification by Line-of-sight Extinction Variations

Our treatment of the impact of extinction on the photometry
(and therefore the relative photometric parallax) assumes that
the extinction is constant over the line-of-sight distances of
interest. Violations of this assumption might in principle
influence the trends we observe, by artificially broadening the
line-of-sight distribution (with stars more affected by extinction
appearing farther from the observer).'” Here we examine the
likely impact on our main results of extinction variations along
the line of sight.

A few studies have mapped the 3D extinction distribution
out to the far side of the bulge (e.g., Marshall et al. 2006;
Schultheis et al. 2014). Particularly for sight lines close to the
Sagittarius window we study here, most of the extinction at
these distances takes place at distances D < 5kpc from the
Sun, possibly broken into two foreground concentrations (at
D =~ 3 and 5 kpc; e.g., Marshall et al. 2006). Thus, along our
sight line, extinction variations within the bulge are likely to be
small compared to variations in the foreground disk, an
interpretation consistent with the photometry of red clump stars

19 Indeed, superposition of extinction in two separate spiral arms along the line
of sight might be partially responsible for the difficulties characterizing
extinction law toward the bulge with simple models (Nataf et al. 2016, e.g.,).
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in this field (Cl108). Hence, the trends we find for line-of-sight
distances 5 kpc < D < 11 kpc—the main sample of interest—
are likely unaffected.

By symmetry we might expect additional extinction from at
least one dust screen at distances D 2 11 kpc owing to spiral
structure on the far side of the bulge (see, e.g., Figure 10 of
Schultheis et al. 2014). This would be mitigated somewhat by
the slightly tilted path of our line of sight compared to the
Galactic plane; at Galactic latitude byyp09.0 = —2°65, our sight
line is already ~480 pc below the Galactic midplane when it
reaches D = 11 kpc, roughly where it might intersect the first
dust concentration on the far side of the bulge (compared to
~210pc at Skpc), suggesting that far-side extinction may
likely be somewhat weaker than experienced in the foreground.

We therefore conclude that indeed the photometric paral-
laxes for objects closer than D ~ Skpc and farther than
D ~ 11 kpc may have been assigned photometric parallaxes
that are artificially close and far, respectively. However, as
those distances are outside our main regions of interest, this
does not impact any of the trends that we report.

5.4. The Influence of the Proper-motion and
Distance Zero-points

All proper motions in this work are reported relative to the
same proper-motion zero-point pir o, which is defined as the
average proper motion of astrometrically well-measured stars,
whatever their metallicity (Section 2.1). We have chosen not to
apply separate proper-motion zero-points to the two samples,
for example, by forcing the two samples to each show
= 0.0masyr ' at 7/ = 0.0 mag, but opt to keep the proper
motions in the same reference frame for each sample to allow
direct comparison between (7, 1) rotation curves.

We then find that the central proper motions for the
“metal-rich” and “metal-poor” samples (i.e., the median proper
motions for stars near their fiducial sequences) differ by
(1, Mb)gmfw ~ (+0.14, —0.13) masyr ' (Section 3.6);
equivalently, the rotation curves do not meet at (7', y,) =
(0 mag, 0 mas yr_l).

These discrepancies could be due to differences in the mean
intrinsic velocities of the fiducial stars between the samples, or
differences in the line-of-sight distance at which the fiducual
stars are found, or a combination of the two. Since the fiducial
sequences for the two samples are determined from their CMD
population densities (see Figure 5), their central proper motions
could well differ if their densest observed regions occurred at
different distances. This could occur naturally if the two
samples are oriented differently in the Galactic plane (in which
case the relationship between the mean velocity v and its
transverse velocity components v; and v, would also differ
between the samples).

If the fiducial stars for the two samples do indeed lie at
different distances Do = Dy + A, (with A, giving the
distance offset for a particular sample), then the appropriate
conversion from (7/, p,) to (D, v;) will also differ, in turn
impacting the difference in rotation curve velocity amplitude
for the two samples. Figure 13 shows how the velocity rotation
curve is impacted by shifting the “metal-rich” fiducial by
distance offset A kpc from the “metal-poor” fiducial. Bringing
the “metal-rich” fiducial closer than the “metal-poor” one does
reduce the velocity amplitude discrepancy between the two
samples. However, to bring the velocity amplitudes of the two
samples into agreement, the “metal-rich” fiducial would need
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Figure 13. Estimation of the impact on the velocity rotation curves of allowing
the fiducial distance to differ between the samples. The blue dashed line shows
the velocity rotation curve of the “metal-poor” sample, converting from (7', j4;)
to (D, v;) using fiducial distance Dy = 7.76 kpc (the shading encompasses
+10 uncertainties at each distance bin). The red solid lines show velocity
rotation curves for the “metal-rich” sample, using fiducial distance Dy + A.
Reading left to right, the distance offset varies over the range
—3.0kpec < A < 3.0kpc in 1 kpc increments. The case A = 0 is highlighted
for reference. See Section 5.4.

to be brought closer by |A| 2 2 kpc, which seems unlikely for
samples so close to the Galactic rotation axis (at [ ~ +1°26).
Unless the spatial distributions of the two samples really are
radically different, then, we consider it unlikely that a
difference in fiducial distance between the samples can by
itself produce the observed difference in velocity rotation curve
amplitude we are measuring.

While an offset A in fiducial distance scales the velocity
amplitude by a corresponding amount, an offset App, in
the proper-motion zero-point produces a systematic shift
A(dv/dD) = —4.74Apg, in the velocity gradient. If pp,
(the average proper motion of well-measured bulge stars
of all metallicities) and D, (the average distance to bulge
stars of all metallicities) are both determined from the same
set of stars, then we would have App, = 0mas yr ' and
thus A(dv/dD) = 0km s~ kpc~!.

However, in reality the sets of stars used to estimate g , and
Dy will in general differ. The fiducial distance Dy is estimated
from the distribution of “extreme-bulge”(EB) stars showing
< —2.0masyr ' (e.g., Cal5), while Mg is estimated from
stars below the MS turnoff without any proper-motion
selection. Thus, although stars well measured astrometrically
tend also to be well measured photometrically, differing
selection effects in the determination of Dy and g o will still
lead to a global systematic offset in Apy, .

The true value of AMF,O is unknown; however, we can form
a rough estimate as the median proper motion of the population
traced by the EB objects used to estimate D, (Cal4). The EB
objects have highly negative proper motions by construction,
but we can estimate the median proper motion of the
underlying population that they trace by estimating the median
photometric parallax (7’) of the EB tracers and applying the
proper-motion rotation curve characterization i, (7’) of
Section 4.1. Since we have performed this characterization
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separately for “metal-rich” and “metal-poor” samples, we can
estimate Apup separately from the two samples. Applying
the kinematic cut i, < —2.0masyr ' to extract EB tracers
for the “metal-rich” and “metal-poor” populations, we find
median photometric parallax (7')gg Mr ~ +0.025 mag and
(")ep.mp &~ —0.002 mag for EB objects in the “metal-
rich” and “metal-poor” samples, respectively (so that objects
with y; = O mas yr~ ' lie slightly in front of the EB population,
as expected; see Section 5.9). This suggests that the underlying
population traced by the EB objects—corresponding to the
fiducial distance Dy—has median longitudinal proper motion
{)mr ~ —0.17 and {p1)mp =~ 0.00 masyr '. These figures
are likely also sensitive to differing intrinsic proper motion
and distance distributions between the samples, but this
estimate suggests that the proper-motion difference between
the sample from which the proper-motion reference frame was
set and the sample from which Dy was estimated is not
larger than Apgy < 0.17 mas yr ', Thus, the systematic
velocity gradient uncertainty A(dv/dD) may be on the order
of ~0.8 km s~ ! kpc~'.

Systematic uncertainty in the proper-motion zero-point
Mg may therefore impact the ratio of longitudinal velocity
gradients reported in Section 4.1 by <10% (Table 7), which is
too small to materially affect the main results or conclusions we
report.

5.5. Does the Proper-motion Rotation Curve Vary with [Fe/H]?

We are finally in a position to answer the question posed by
Section 1.1. Our “metal-rich” and “metal-poor” rotation curves
are inconsistent with each other at ~5.4¢ for the rotation curve
slope and ~6.50 for the near-side—far-side rotation amplitude
(Section 4.1).

These proper-motion-based results stand in strong contrast to
determinations of the radial velocity rotation trends, which
either find weak if any discrepancy between “metal-rich” and
“metal-poor” samples (e.g., Ness et al. 2013b; Williams
et al. 2016; Zoccali et al. 2017) or require a large contribution
from samples with [Fe/H] < —1.0 to produce a discrepancy in
rotation curves (e.g., Minniti 1996; Kunder et al. 2016; note
that the fraction of stars in our sight line with [Fe/H] < —1.0 is
likely low; Zoccali et al. 2017). It seems unlikely that this
discrepancy between our proper-motion-based study and these
radial-velocity-based studies can be due purely to any
differences between the uses of giant and dwarf stars as
tracers, since microlensed dwarfstars also show no strong
differences in mean radial velocity between metal-poor and
metal-rich stars (or, for that matter, between stars younger and
older than ~7 Gyr; Bensby et al. 2017).°

The most likely explanation for the difference between
proper-motion and radial velocity results is the strong
difference in the way the studies sample the inner Milky
Way. Detailed comparison of our new observational indica-
tions with model prediction is deferred to future work;
however, a likely scenario to explain the differences can be
outlined as follows. In the simulations of Debattista et al.
(2017), the final orbital configuration of bulge stars depends on
their (radial) velocity dispersion before bar formation. To the
extent that [Fe/H] and radial velocity dispersion correlate with
each other (or, equivalently, each correlate with time of

20 See Cohen et al. (2010) for discussion of possible differences in metallicity
distribution between dwarfs and giants due to stellar evolutionary effects.
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formation), the “kinematic fractionation” resulting from bar
formation might well leave metal-rich stars with a higher
fraction of elongated orbits than for metal-poor objects. That
the “X” structure is observed to preferentially contain metal-
rich objects (e.g., Vasquez et al. 2013) supports the notion that
stars within our “metal-rich” and “metal-poor” samples on
average move along differently shaped orbits, while the spatial
structures traced by Mira variables of different pulsation period
ranges suggest that samples with differing spatial configuration
can coexist in the same volume at the present day (Catchpole
et al. 2016). The “metal-rich” and “metal-poor” samples may
then show quite different transverse velocity distributions as a
function of line-of-sight distance, even if the distributions
produce similar mean velocities when averaged along the line
of sight owing to radial velocity survey selection effects. In this
scenario, only by dissecting the population by line-of-sight
distance (or its proxy, ') can the differing velocity distribu-
tions of the two coexisting samples be distinguished.

Since stars in the “metal-rich” and “metal-poor” samples all
move through the same present-day potential, by detecting
differences in the proper-motion-generated rotation curve, we
may well be detecting differences in orbital anisotropies
between metal-rich and metal-poor bulge objects. While
detailed prediction is a topic of ongoing work, the differences
we detect seem qualitatively reasonable at present.

Having shown that the proper-motion-based rotation curve
does show discrepancy between “metal-rich” and “metal-
poor” populations, the necessary next step is to extend our
approach to more sight lines within the inner bulge. By
comparing metallicity-dissected proper-motion-based rotation
curves between fields, the trends with location in the bulge can
be charted empirically, allowing a sharper test of the true
variation of bulge rotation with the metallicity of the sample
probed. This work is deferred to a future communication.

5.6. Proper-motion Dispersion Trends
with Photometric Parallax

Both the “metal-rich” and “metal-poor” samples show a
clear central peak in velocity ellipse major-axis length near the
distance interval where the samples are the most densely
populated (Figure 11). The peak persists in the velocity ellipse
minor axis for the “metal-rich” sample but is rather less clear in
the “metal-poor” sample. This is broadly similar to the trends
found from the combined population in previous studies
(e.g., ClO8, Soto et al. 2014). We note a rough, qualitative
similarity with the curve of radial velocity against Galactic
longitude for Galactic latitude b = —2° (see the middle left
panel of Figure 12 of Zoccali et al. 2017); however, we remind
the reader that the radial velocity and proper-motion trends
cannot directly be compared because they suffer from differing
selection effects. That the proper-motion dispersion of the
“metal-poor” component is generally slightly larger than that of
the “metal-rich” one (particularly along the minor axis) is
qualitatively consistent with expectations that a metal-poor,
less rotationally supported population should show higher
velocity dispersion (e.g., Ness et al. 2013b; Debattista
et al. 2017).

We may also be detecting the velocity dispersion “inversion”
detected at the innermost fields in radial velocity studies
(Babusiaux et al. 2014; Zoccali et al. 2017). Consistent
with the low-latitude radial velocity dispersion trends, the
proper-motion-based velocity dispersion might also be greater
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for the “metal-rich” sample than for the “metal-poor” sample at
the distance bins closest to the center of the bulge (see
Figure 11). For the innermost bulge regions, the proper-motion-
based “metal-rich” velocity dispersions also show steeper
gradient than the “metal-poor” ones, but with the gradient
against line-of-sight distance rather than Galactic longitude,
with the innermost distance bin possibly showing slightly
greater velocity dispersion for the “metal-rich” sample.

5.7. The Line-of-sight Distance Distributions
of the Two Samples

The tendency of the “metal-poor” sample to show greater
dispersion in relative photometric parallax (or, correspond-
ingly, in distance D) is qualitatively consistent with the
“kinematic fractionation” of Debattista et al. (2017). Under that
mechanism, more “metal-poor” populations also initially had
greater radial velocity dispersion, leading to a distinct (and
broader) present-day spatial distribution when compared to the
most “metal-rich” objects.

The difference we find in line-of-sight distribution between
the “metal-rich” and “metal-poor” samples might also be
consistent with the observations of Catchpole et al. (2016),
who find differing bar angles and degrees of central
concentration for Mira variables of different ages. However,
the interplay between age and metallicity of bulge stars is likely
not simple. For example, while a gentle relationship may exist
between [Fe/H] and the fraction of stars younger than about 8
Gyr (e.g., Figure 14 of Bensby et al. 2017 or Figure 10 of
Bernard et al. 2018), the microlensing spectroscopic surveys
suggest that stars can take any metallicity value (for
[Fe/H] = —1.0) for any age. How the predictions of Catchpole
et al. (2016) translate into predictions for the two samples here
is deferred to future work.

5.8. Are the Metallicity Samples Themselves Composite?

In addition to any continuous metallicity—velocity correla-
tion, the samples may include populations from distinct entities
within the bulge region, whether interlopers from the halo (e.g.,
Koch et al. 2016), any thick-disk component (e.g., Ness
et al. 2013a), or a small “classical” bulge component (Kunder
et al. 2016).

We have therefore performed the exercise of decomposing
each of the “metal-rich” and “metal-poor” samples into two-
component GMMs (in j; only), to determine whether any
minority component is distinguishable within the rotation
curves formed from the two samples (Figures 14 and 15). No
minority population is detected in either sample; indeed, when
a two-component GMM is used, the two centroids track the
mean rotation curve within each sample roughly symmetrically
about the mean rotation curve, while each subcomponent has
roughly equal weight in the mixture.

We therefore conclude that a minority component with
discrepant rotation curve is not required in either the “metal-
rich” or “metal-poor” sample, but due to the small sample size
(~2000 stars in total per sample), we cannot at this stage rule
out its presence. Direct comparison with population models
may allow upper limits to be set on the presence of any
minority component within each sample, but this is deferred to
future work.
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Figure 14. Representation of the “metal-poor” rotation curve as a two-component GMM in g, to test the hypothesis that the “metal-poor” sample might itself be
composite. Left column: rotation curve in 4, as tracked by the two model components (top), and the relative weights of the two model components (bottom). Large
dots indicate the more populous of the two model components in each bin («; = 0.75 would mean that three-quarters of the sample came from model component k).
The gray line in the top left panel shows the rotation curve inferred using a single model component at each distance bin. Right column: y, distribution for the bin
indicated for the shaded distance bin in the left column. Top right: 4, distribution (shaded histogram and thin black line), with the prediction of the two-component
GMM (the thick and thin blue lines indicate the more and less populous model component, respectively, while the blue dashed line indicates the sum of the two). The
gray thick line shows the prediction of the single-component model. The bottom left and bottom right panels show the vector point diagram and distance modulus

distribution, respectively. See Section 5.8.

5.9. Implications for Proper-motion Selection

Photometric studies of the bulge typically impose a condition
;< —2.0 mas yr~ ! to isolate a clean-bulge sample for further
study (e.g., Kuijken & Rich 2002; Calamida et al. 2014),
although there are exceptions (e.g., Bernard et al. 2018).?' This
procedure is appropriate because in the sight lines typically
studied near the Galactic center the foreground disk population
typically shows proper motion relative to the mean-bulge
population of Ay ~ +4 mas yr ', as suggested by direct
comparison of the proper motions of bulge giant branch stars
with those of the upper MS population of (mostly) disk
foreground stars (e.g., Cl08; Soto et al. 2014).

To investigate whether and how a simple cut on f;, imposes
selection effects on the two samples, we computed the sample
counts, fractions, and volume densities for objects that would
pass the longitudinal proper-motion cut (1, < —2.0 mas yr ).
The results are plotted in Figure 16 and presented in tabular
form in Tables 16 and 17 in Appendix I.

We find that the cut (1 < —2.0mas yr ') admits very few
foreground objects from either sample; both samples show
fewer than two objects passing this cut for the closest distances
(D < 4.53kpc and <4.10kpc for “metal-rich” and “metal-
poor” samples, respectively; see Tables 16 and 17 in
Appendix 1), while the mean proper motion () of the
foreground population climbs strongly for the closest distance
bins (Figure 8). We therefore confirm that the traditional

21 (Here the symbol g takes exactly the same meaning as elsewhere in the
present report, referring to proper motion relative to mean-bulge objects rather
than relative to the Sun. Thus, the proper-motion cut 1, < —2.0 mas yr ! selects
objects on the far side of the longitudinal proper-motion distribution from
foreground disk objects.)
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proper-motion cut (4 < —2.0masyr ') does indeed remove
nearby objects cleanly for the SWEEPS field.**

Beyond this, however, the dissection by relative abundance
has revealed several interesting selection effects among the
kinematically cleaned sample (Figure 16).

First, as expected, there is a bias toward the far side of the
bulge, but this bias is much stronger in the “metal-rich” sample
than for the “metal-poor” one; indeed, the fraction of “metal-
poor” objects passing the kinematic cut is almost flat with
inferred distance between ~5 and 9 kpc.

Second, the raw counts of sources thus isolated in the
“metal-rich” and “metal-poor” samples are of similar orders of
magnitude. Considering sample sizes that pass the kinematic
cut at inferred distances between 6.4 and 9.1 kpc (chosen to
encompass the bulge populations; see Tables 16 and 17), the
total counts in each sample are 521 4+ 19 and 507 £ 19 for
the “metal-rich” and “metal-poor” samples, respectively (the
uncertainties, estimated from the quadrature sum of parametric
bootstrap uncertainty estimates in these counts for each bin, are
almost certainly underestimates). With total sample sizes within
this distance range of 2181 (1783) for the “metal-rich”
(“metal-poor”) samples, this translates into fractions 24% + 1%
(28% =+ 1%) of the “metal-rich” (“metal-poor’”’) samples that
pass the kinematic cut. Thus, of objects in this distance range,
the kinematic cut appears to slightly favor the “metal-poor”
sample, although the difference is small.

2 Strictly speaking, the classification of the nearest objects into ‘“metal-
rich” and “metal-poor” samples may suffer different selection effects to the rest
of the samples because either or both of the stellar parameters and extinction
might be different for the very nearest objects compared to the majority sample
at more bulge-like distances. We are making the assumption that the relative
classification of objects in the nearest distance bins is still valid.
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Figure 15. Representation of the “metal-rich” rotation curve as a two-component GMM in /i, to test the hypothesis that this sample might be a composite of two
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In principle, a population of compact objects among the
foreground population might fall into the farther distance bins
for the “metal-poor” sample,” polluting a sample with bulge-
like motions with a small population showing disk-like
motions. However, with the foreground disk population at
~10% of the total (Cal4) and with a substantial white dwarf
population perhaps unlikely for a typical “young” foreground
population, we do not consider this a significant contaminant,
and we leave exploration of the impact of foreground white
dwarfs to future work.

6. Conclusions

We have performed an exploratory study to determine the
utility of HST proper motions in charting the kinematic
behaviors of “metal-rich” and “metal-poor” samples within
the Galactic bulge from their proper motions, extending the
rotation curve technique first pioneered by Kuijken & Rich
(2002). The ultradeep SWEEPS photometric and astrometric
data set communicated in Calamida et al. (2014) was merged
with the WFC3 Galactic Bulge Treasury Survey (Brown et al.
2010); “metal-rich” and “metal-poor” samples were drawn
using the [¢], [m] indices of Brown et al. (2009), recomputed
for the stellar parameters appropriate to the proper-motion
sample of interest and assuming Ry = 2.5. The proper-motion-
based rotation curves were determined from the “metal-
rich” and “metal-poor” samples separately, using relative
distance modulus as the depth coordinate. While detailed
comparison to population models is deferred to future work, we
draw the following conclusions at present:

1. The union of SWEEPS and BTS data sets has revealed
that indeed the ‘“metal-rich” and “metal-poor” rotation
curves are clearly discrepant from each other.

2 At colors typical of the “metal-poor” sample, the quiescent dwarf novae
found by Cal4 at the distance of the bulge show F606W ~ 28. Similar objects
in a very nearby foreground disk population (<3 kpc) might fall within the
faintest bins of our chosen sample.
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2. Characterizing the rotation curves for the inner bulge regions
with straight-line fits, the “metal-rich” population shows a
steeper rotation curve in Galactic longitude, with gradient
ratio (Byr/Bwmp); = 3.70 £ 0.68 (a ~ 5.40 detection).

3. The near-side—far-side velocity amplitude is also deter-
mined to be discrepant; the rotation curve amplitude A of
the “metal-rich” sample is greater than that of the “metal-
poor” sample by a factor (Avr /Amp)y = 2.29 £+ 0.35
(a =~ 6.50 detection).

4. While selection effects are likely complex, it does not
appear to be possible to force the rotation curve of the
“metal-rich” sample into consistency with that of the
“metal-poor” sample by any reasonable observational
perturbation of the “metal-rich” sample. Therefore, the
differences in rotational behavior likely represent intrinsic
behavior, not instrumental or observational artifacts.

5. The velocity dispersion curve of both samples shows a
clear peak at the line-of-sight distance where the samples
are most dense. At the innermost distance bins, the
velocity dispersion of the “metal-rich” sample shows a
steeper gradient than does the “metal-poor” sample,
consistent with recent radial velocity studies.

6. These results may indicate differences in orbital aniso-
tropy between metal-rich and metal-poor objects within
the bulge, in turn providing a new observational criterion
for testing models of bulge formation and evolution.

7. The traditional proper-motion cut used to isolate a clean-
bulge sample, j; < —2.0masyr ', slightly overselects
“metal-poor” objects compared to “metal-rich” ones, at
the level of 28% compared to 24%.

8. However, this selection effect is a function of relative
photometric parallax; with this cut, the fraction of “metal-
poor” objects selected is roughly constant, while for the
“metal-rich” population the selection strongly prefers
objects on the far side of the bulge.

In addition, while exploring population systematics, we have
found the following:
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1. The current version (v5.0.1) of the widely used BaSTI set
of synthetic stellar population methods and isochrones
appears to be imposing a truncation on populations near
the edges of the [Fe/H] distribution found in the bulge;
this includes a large part of the metallicity range traced by
stellar halo models (e.g., An et al. 2013). Studies using
BaSTT version 5.0.1. or earlier may be vulnerable to this
truncation.

The Galactic bulge thus joins the list of stellar populations
suspected to show distinct rotation curves depending on the
chemistry of the tracer stars used, including at least one
globular cluster (M13; Cordero et al. 2017) and the Sculptor
dwarf spheroidal galaxy (e.g., Zhu et al. 2016, and references
therein).

While the SWEEPS data set represents the deepest (by far)
set of images ever taken by HST toward the inner bulge, the
typical apparent magnitude range probed by this study is
shallow enough that we expect the techniques presented herein
to be applicable to other fields for which ([z], [m]) are available.
The extension of this work to the other fields in the BTS survey
is deferred to a future communication. This will provide a
relatively assumption-free set of observational constraints
against which the trends from the most recent set of models
can be compared, subjecting them to direct test. This will
finally enable the Galactic bulge to be used as a quantitative
test case for the formation and development of galactic
structure.
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a collaboration between the Space Telescope Science Institute
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Appendix A
SWEEPS Proper-motion Measurement Uncertainty
Proper-motion  uncertainties from the 2004-2013

SWEEPS data are impacted by random uncertainties, by
intrinsic velocity dispersion of the objects used to fit frame
transformations when estimating proper motions, and by
residual relative distortion between epochs. Here we discuss
these sources of uncertainty in turn.

As part of the investigation of the faintest detectable objects
in the SWEEPS field, Cal5 performed extensive artificial-star
tests, including the injection of proper motions across the entire
set of 2004-2013 epochs, yielding the run of random proper-
motion uncertainty in each coordinate with apparent magni-
tude, which we denote here as £(F814W). While Cal5 thus
produced separate estimates for uncertainties in the detector-X
and detector-Y directions, for the apparent magnitude range of
interest to this work the characterizations in the two directions
are similar; in practice, we use the two runs in detector-X and
detector-Y as separate samples of a symmetric underlying
uncertainty distribution, characterizing log;o(€) as a fifth-order
polynomial in F814W for rapid evaluation.

Improved characterization of residual distortion has also
become available, as the data sets used to characterize ACS/
WEC distortion have grown. In the SWEEPS filters, residual
distortion is on the order of ~0.01-0.02 ACS/WFC pixels
(0.5-1.0 mas at ~50 mas pixel '), with a complex pattern of
variation with spatial scale roughly 150 ACS/WFC pixels
(Anderson & King 2006; Kozhurina-Platais et al. 2015). This is
consistent with a recent high-precision astrometric character-
ization of the full set of SWEEPS epochs for astrometric

24 http: / /www.astropy.org /index.html

= http://scikit-learn.org /stable/

26 hitp: / /www.astroml.org/

7 hup: //albione.oa-teramo.inaf.it/

3 http:/ /pysynphot.readthedocs.io /en/latest/
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microlensing (Kains et al. 2017), which indicated residual
distortion corrections of ~+0.02 ACS/WEFC pixels for the
candidate astrometric microlensing sources (evaluated within
200 ACS/WEC pixels of each candidate; see Kains et al. 2017
for details), with the residual changing sign seasonally owing to
the midyear 180° flip in HST"s orientation angle for observa-
tions of this field. The observation dates of the 2011-2012—
2013 epoch sample both HST orientations roughly equally, so
the residual distortions in this epoch were to some extent
averaged through when mean positions were computed per star,
while central pointings in this epoch are typically within
~50 ACS/WEC pixels of the central pointing of the 2004
epoch. We therefore adopt A = 0.015 pixels (0.75 mas) as a
reasonable estimate for the differential residual distortion
suffered when proper motions are estimated across the two
epochs.

For each object, then, the per-coordinate proper-motion
uncertainty ¢; can be estimated from the relation

2
o)

2 2
€; ~ £(F814W)~ +
& ) Ny — 2 T

2

where ¢(F814W) is the artificial-star-test random proper-
motion uncertainty estimate evaluated at the apparent magni-
tude of the object. N, is the number of tracer stars used to map
the reference frames between epochs, and oy, is the proper-
motion dispersion (in mas yrfl) of the tracer stars (assumed to
be estimated from the observed data, although if N, is large,
this assumption has little effect).”® 7 is the time baseline for the
two-epoch proper motions, and A; is the positional offset (in
mas) incurred at the detector due to differential residual
distortion between the epochs, discussed above. (The third term
A;/7 in Equation (2) does not appear in Equation (1) of Cl08
because local transformations were used for that work to
mitigate residual distortion.)

The random uncertainties & (F814W,) are small for most of
the sample. Most of the objects selected for rotation
curve analysis are in the range 19.5 < F814W < 23.3 (e.g.,
Figure 2), for which the artificial-star tests of Cal5 suggest
proper-motion random uncertainty 0.008 mas yr ' < & <
0.07masyr ' per coordinate. For the second term in
Equation (2), the number of tracers N, is large (on the order
of Ny ~ 4 x 10*since the full field of view was used to relate
the reference frames of the 2004 and 2011-2012-2013
epochs), so the second term in Equation (2) evaluates to
~(0.015 mas yr_ )%, Finally, as discussed above, the typical
magnitude and spatial scale of variation of residual distortion
suggest A ~ 0.75 mas, while the time baseline 7~ 8.96 yr
(Table 1) then suggests that the third term in Equation (2) can
be estimated as (A,»/T)2 ~ (0.08 mas yrfl)z.

Figure 17 shows the adopted characterization of the
proper-motion uncertainty, plotted over an apparent magni-
tude range that encompasses the proper-motion sample used
herein. Differential residual distortion is likely the largest
contributor to the proper-motion uncertainty for most of the
proper-motion sample, although the random uncertainty
becomes roughly as large at the faint end of the proper-

29 Because the artificial-star tests inject few enough stars per trial to avoid
altering the image crowding, they do not significantly alter the sample of
moving tracer stars used to map reference frames between epochs when
recovering injected proper motion; thus, artificial-star tests are only minimally
sensitive t0 opm.


http://www.astropy.org/index.html
http://scikit-learn.org/stable/
http://www.astroml.org/
http://albione.oa-teramo.inaf.it/
http://pysynphot.readthedocs.io/en/latest/
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Figure 17. Run of adopted proper-motion uncertainty (per coordinate) against
F814W apparent magnitude, including random uncertainty suggested by
artificial-star tests (Calamida et al. 2015; dot-dashed line), the contribution
due to intrinsic motion of the reference-frame tracer stars (dashed), and the
estimated effect of residual differential distortion (gray solid line). Nearly all of
our proper-motion sample falls in the range 19.5 < F814W < 23.3 (Figure 2).
See the discussion in Appendix A.

motion sample considered here.*® Since the magnitude of the
residual distortion A; actually suffered by each object is
unknown, some caution is warranted when interpreting the
magnitude of the proper-motion-based velocity dispersion
from these data. However, the total proper-motion uncer-
tainty estimates (¢; < 0.12 mas yr ') are still far smaller than
the intrinsic proper-motion dispersion of the bulge
(~3 mas yr "), and so the reported trends should be reason-
ably robust against proper-motion measurement uncertainty.

Appendix B
Gaussian Mixture Modeling

This work makes heavy use of a GMM to characterize
overlapping populations in various spaces (e.g., Sections 3.3,
3.5, and 3.7). GMM is a standard technique in unsupervised
machine learning (e.g., Bishop 2006), with growing use in
astronomical data analysis (Ivezi¢ et al. [2014] and Bovy et al.
[2011] provide particularly clear and authoritative presentations
of GMM in an astronomical context, including the extension of
the methods to strongly nonuniform measurement uncertainty).
Briefly, the sample is modeled as a sum of (k= 1..K)
Gaussian components, with the mixture weight o; of each
component (where YXo; = 1) estimated by treating the
unknown component identification of each object as a latent
variable, fitting the mixture-model components 6, iteratively
along with the mixture weights, usually using the expectation-
maximization algorithm or a variant thereof.

Under the GMM framework, we can write the formal
membership probability Wy, that a given object belongs to each
model component (the “responsibility” in the language of

30 Figure 17 shows that random uncertainty dominates the proper-motion
uncertainty for F814W 2 25; thus, the artificial-star tests of Cal5 do indeed
capture nearly all of the proper-motion uncertainty appropriate for the white
dwarf sample of Cal4 and the sample at the low-mass end of the MS charted
in Cal5.
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Bishop 20006) as
aip(x|6, S;)

K
Z amp (xi|0m7 Sl)

m=1

Wi = 3)

(as has been common practice for decades in the field of
globular cluster studies, under slightly different notation). Here
x; represents the measured coordinates of the i’th object, 8y the
components of the k’th model in the mixture (i.e., its mean and
covariance matrix), oy the relative weight of the k’th model
component, S; the covariance matrix due to measurement
uncertainty for the 7’th object, and p(x;|0y, S;) the likelihood of
measuring x; given the k’th model parameters, assuming that
the object does belong to that component.

B.1. Measurement Uncertainties in [t], [m]

From the definition of the [¢], [m] indices (Equation (1)),
uncertainty propagation produces an approximation for the
appropriate measurement uncertainty covariance S; for each
data point, which we reproduce here for convenience. We
adopt

2 2
Ot Otm
S=|,
Omf O—”l i

_[aé + (1 + a)0? + a0} —(1 + Bop

(1 + B0y + o¢ + f%7)
“

where (0%, 07, 07, 05, 0%) are the individual photometric
uncertainty estimates in the BTS filters and (o, () the
appropriate scale factors for the indices (Equation (1)). Since
a? > (1 + P) for these indices (for all populations of interest;
Brown et al. 2009), we expect the covariance matrices for most
of the stars to generally align with the [¢] direction, with only
weak uncertainty covariance. Indeed, this is usually the case,
though there are exceptions (Figure 18).

We are also assuming that the apparent magnitudes and their
relevant linear combinations are normally distributed, working
in apparent magnitude space rather than flux space because the
photometric uncertainties are already reported in magnitudes in
the BTS catalog. We impose a photometric uncertainty cut of
o < 0.1 mag (Table 3) to reduce the number of objects that
strongly violate this assumption. Nevertheless, long tails in the
observed [t], [m] distribution for objects with relatively high
photometric uncertainty may be expected.

—(1 + Byod

B.2. How Many Mixture Components?

To estimate the number of components required to best
represent the [¢], [m] distribution, we employ two commonly
used measures, the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC). These measures quan-
tify the badness of fit while penalizing more complex models,
with the BIC penalizing overly complex models more severely.
More information can be found in Ivezié¢ et al. (2014); these
measures take the forms

AIC = 2p — 2InL )

BIC = pInN — 2InL, (6)
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Figure 19. Left panel: distribution of [m], for objects satisfying —2.8 < [¢] < —1.4, representing roughly the population within the outer contour in Figure 3. The gray
shaded region shows the observed [m] distribution. The upper gray solid line shows a GMM trained on the [m] distribution. The colored solid and dashed curves show
realizations of the individual model components. Middle panel: as in the left panel, but with an eight-component GMM specified as an ansatz for a continuum of
populations. Right panel: formal assessment of the number of parameters required to reproduce the observed [m] distribution. Standard figures of merit, the BIC (black
dashed line), and the AIC (gray solid line; see, e.g., Ivezi¢ et al. 2014) are plotted as a function of the number of model components. A GMM representation of the
[m] distribution seems to require at least two components, with little improvement for more complex models. See Appendix B.2.

where lower values indicate a formally better fit. Here p is the
number of parameters in the model, N the number of data
points, and L the likelihood (data given model) returned by the
mixture modeling procedure. For a GMM consisting of a
mixture of K model components representing g-dimensional
data points, the number of parameters p is given by

gxKx(@q+1)

5 (N

pz(q><1<)+( )+<K—1>

so that mixtures with K = 1, 2, 3, 4... model components
consist of p = 5, 11, 17, 23... parameters when fitting the 2D
[¢], [m] distribution. ~When characterizing the [m] or
({1, [m]) distribution with a GMM, we allow K to vary up to
large values (usually K = 9) and look for models in which the
AIC and BIC stop improving as K is increased.

Figure 19 shows an attempt to reproduce the distribution of
[m] only as a GMM (see Appendix B for discussion of the
technique). At least two components seem to be required,
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although the data do not discriminate between the simplest
model that fits the data (two components) and a continuum
(e.g., eight components). In early trials using data selected only
on photometric measurement uncertainty, a mixture model with
more than three components would usually include an
extremely broad, low-significance Gaussian component. On
plotting the [m] counts on a log scale, this component was seen
to be fitting handfuls of far outliers in the [m] distribution (with
[[m]| > 0.5; compare with the range in Figure 19). This may be
expected if the outliers are not well represented by the model
form; nevertheless, the GMM implementation would attempt to
assign a model component to the outliers once the model grew
sufficiently complex, which in turn would distort model
components much nearer to the location of the main population
of objects. Circumventing this outlier problem was the main
motivator for outlier removal in [¢], [m] when selecting objects
for further analysis (Table 3).

Figure 20 shows the characterization of the ([¢], [m])
distribution with a 2D GMM as the number of model
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Figure 20. GMM of the population selected for rotation curve study. Reading top to bottom, panels show the GMM characterization for K = 2, 3, 4 mixture
components. Left panels show the histogram of samples drawn from a GMM fit to a randomly selected sample of half the data (the “training set”). The middle left
panels show the other half of the data (the “test set”), with the 1o contours of the model components overplotted as thick cyan ellipses. The middle right panels show
the residuals (samples from the model minus the observed counts in the “test set”). The bottom right panel shows formal fit statistics as a function of the number of

model components. See Appendix B.2.

components is increased. To examine the impact of changing
the number of model components K, the [¢], [m] data were
split into two equal-size samples (the “training” and “test”
sets), and the GMM fit using the “training” set. Samples (of
[¢], [m]) were then drawn from the model and perturbed by
measurement covariances S; from the “test” set, and the
([#], [m]) distribution of this predicted set was compared with
the “test” set. While models with K = 2, 3, 4 components
each provide a reasonable visual match to the observed
[t], [m] distribution, the AIC and BIC both indicate that
K = 4 provides the best representation of the data, while
increasing the number of components beyond K = 4 does
not improve the fit further (indeed, the BIC suggests that
models with K > 4 fit the data more poorly).

Appendix C
Spectroscopic Estimate of the [Fe/H] Spread
in SWEEPS-field Bulge Stars

An estimate of the spectroscopic metallicity distribution in
this field is useful to calibrate synthetic stellar populations
when investigating possible systematic effects. To perform
this estimate, we use a deep set of VLT spectroscopic
observations originally performed to provide radial velocity
follow-up to the SWEEPS transiting planet candidates;
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details can be found in Sa06; here we outline the relevant
features for the present paper.

C.1. Spectroscopic Observations of the SWEEPS Field

Fiber-fed echelle spectroscopy was taken using UVES
between 2004 June 22 and 25 (ESO program 073.C-0410(A);
PI Dante Minniti). [M/H] estimates were produced in a similar
manner to the analysis in Fischer & Valenti (2005) and Valenti
& Fischer (2005); typically ~50 absorption features from a
solar spectrum (numerically degraded to the spectral resolution
of the observations) are scaled and shifted to find the best
match to the observed spectra. In addition to radial velocities,
this process also yielded estimates for [M/H] (as well as
log(g) and Tufr). The [M/H] determination used mainly metal
lines, with very few C and O lines in the templates used, which
reduces sensitivity in the [M/H] estimates to systematic
differences between giants and MS objects (Valenti &
Fischer 2005).

The 123 objects in the resulting catalog were trimmed
by longitudinal proper motion (;; < —2.0masyr ') to
produce a sample of 93 likely bulge objects with spectroscopic
[M/H] estimates.
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model. Solid lines refer to the model fit with the scikit-1learn XDGMM implementation (Pedregosa et al. 2011), while dashed lines show the parameters fit using
the extreme-deconvolution implementation of Bovy et al. (2011). The algorithm fits the underlying model distribution after correction for measurement
uncertainty; the models and model samples have therefore been convolved with a Gaussian with the median measurement uncertainty for visualization. See Figure 21
and Appendix C. Right column: sample selection and mixture fit criteria for the characterization of the VLT spectroscopic abundance estimates (Appendix C.1). Top
right: SWEEPS CMD showing all 123 spectroscopically sampled objects (black points) and the subset of 93 objects kinematically identified with the bulge (green
squares). The bulge MS turnoff, giant branch, and disk MS are each apparent. Bottom right: the variation of formal figures of merit as a function of the number of

model components. See Figure 21 and Appendix C.

Table 9

GMM Fits to the SWEEPS Spectroscopic Sample of 93 Likely Bulge Objects

k o (XD) [Fe/Hl, (XD) Otre/) (XD) o (ED) [Fe/H], (ED) o1re/n) (ED)
1 0.31 £ 0.049 —0.42 £ 0.079 0.24 £ 0.059 0.26 £ 0.057 —0.49 £ 0.056 0.16 £ 0.042
2 0.69 £ 0.049 0.24 £+ 0.025 0.19 £ 0.020 0.74 £ 0.057 0.22 £+ 0.027 0.19 £+ 0.023
1 0.28 + 0.046 —0.48 £ 0.049 0.17 £+ 0.041 0.28 £+ 0.059 —0.48 £ 0.061 0.17 £+ 0.044
2 0.36 £ 0.086 0.13 £ 0.068 0.12 £ 0.062 0.27 £ 0.202 0.11 £0.110 0.11 £ 0.075
3 0.36 £ 0.086 0.34 £ 0.052 0.17 £ 0.039 0.45 £ 0.209 0.31 £0.176 0.18 + 0.074
Note. Two GMM implementations are reported: “XD” refers to the scikit-learn XDGMM implementation, while “ED” refers to the extreme-

deconvolution method of Bovy et al. (2011). Reported ranges denote the standard deviation over 500 nonparametric bootstrap resampling trials. Parameter sets

are reported for two- and three-component mixture models.

C.2. GMM Characterization of the VLT Spectroscopic Sample

Following previous works, which use multicomponent
Gaussian mixtures to model the [Fe/H] distributions (e.g.,
Hill et al. 2011; Schultheis et al. 2017; Zoccali et al. 2017), we
also characterize the abundance distribution of the 93 spectro-
scopically measured likely bulge objects as a Gaussian mixture
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(Figure 21). Two implementations of GMM with uncertainties
are used: the extreme-deconvolution method of Bovy
et al. (2011), and scikit-learn XDGMM (Pedregosa
et al. 2011). The parameters fitted by the two implementations
are generally consistent with each other and are shown in
Figure 21 and Table 9.
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horizontal axes show spmag, the corresponding sample standard deviation in apparent magnitude. Reading left to right, panels show the badness-of-match statistic, the
difference in distance modulus standard deviations, and the difference in distance modulus skewness. Solid red lines show the median of each statistic, and 95% of the
samples fall within the dashed contours. The blue shaded region and contours show the control test. See Appendix D.1.

Although the 93 objects have somewhat limited statistical
power to distinguish models, it does appear that at least a two-
component mixture is preferred. At four or more components,
both implementations always include a very broad, almost
insignificant component, which suggests overfitting—and
indeed the AIC and BIC do not suggest that more than two
components are required by these data (Figure 21, right
column).

The parameters of the two-component GMM are consistent
with those reported by spectroscopic surveys of nearby fields
(e.g., Schultheis et al. 2017; Zoccali et al. 2017), both of which
find at least two spectroscopic components with similar
fractions «y, centroids, and dispersions. The sample does not
include a more metal-poor component that might be suggestive
of a halo component (e.g., Ness et al. 2013a; Schultheis
et al. 2017).

Appendix D
Differential Spread in Photometric Parallax

Since the distance determination is based on relative
photometric parallax (z'), in principle the “metal-poor” popu-
lation might be subject to additional photometric scatter that
causes it to be more mixed in apparent distance than the
“metal-rich” population (Section 5.1). Might differential dis-
tance blurring be responsible for the apparent differences in
rotation curves, even if the intrinsic kinematic trends for both
samples were identical?

To address this question, we perform simple Monte Carlo
tests, communicated in this section. Differences in absolute
magnitude distribution due to the differing stellar parameter
ranges between the selected samples—particularly [Fe/H]—
require a more sophisticated analysis and are discussed in
Appendix E.

Individual objects in the “metal-rich” sample are perturbed
in apparent magnitude, and the proper-motion rotation curve
for the distance-blurred “metal-poor” sample is compared to
the observed rotation curve for the “metal-poor” sample, by
computing and comparing the smoothed rotation curves
between distance moduli (—1.0 < 7/ < +1.0) for both
samples.

For each form of distance modulus blurring, a run of 30
effect scales is considered. A thousand realizations were run at
each of the effect scales, and the match between the distance-
blurred “metal-rich” and the observed “metal-poor” rotation
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curves was evaluated. Three figures of merit are assessed:
(i) The rms difference between the two trends is used as the
primary badness-of-match statistic, where the longitudinal
proper-motion offset between the two observed trends
(4+0.14 mas yr*l; Section 3.6) is subtracted from the “metal-
rich” sample to ease interpretation (so that a perfect match
between the two samples would produce badness-of-match
value zero). In addition, the difference in 7’ distribution
between the blurred “metal-rich” and observed “metal-
poor” samples is quantified by the difference in (ii) the
m' standard deviations for each distribution and (iii) the
skewness of the two 7’ distributions, since the observed
“metal-poor” distance modulus distribution does exhibit an
asymmetry toward the near side of the median population (e.g.,
Figures 6 and 7).

To determine the ranges of these figures of merit that would
be consistent with a match, for every trial a control test is
performed. A set of 7’ values is drawn following the observed
“metal-poor” 7’ distribution, and the observed “metal-
poor” rotation curve (and proper-motion dispersion curve) is
sampled at the generated 7/ values. For this generated sample,
the rotation curve and comparison statistics are obtained
exactly as for the blurred “metal-rich” sample. In this way, the
figures of merit are also produced for a set of samples when the
“metal-poor” distribution is compared against a statistical clone
of itself, allowing the range of badness-of-fit values to be
charted that suggest that the underlying samples are drawn
from the same distribution.

Two forms of potential distance modulus blurring are
considered independently. Additional scatter in the intrinsic
flux distribution is discussed in Appendix D.1, which accounts
for additional photometric uncertainty or differences in
extinction (or indeed any perturbation that would lead to an
additional flux perturbation of the same general form). The
impact of differing binary fraction is discussed separately in
Appendix D.2, because its imprint on the flux distribution takes
a different form.

D.1. Additional Photometric Scatter in
the “Metal-poor” Population

Additional photometric scatter is simulated as a perturbation
in flux. The apparent magnitudes in the “metal-rich” sample are
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perturbed by amount Am,, defined as

Fo; + AF,
Amy,; =—2.5 logm(u)

0,i
—2.5log;,(1 + sMO, 1)),

= (®)
where AF; is the perturbation in flux, assumed normally
distributed, s the scale of the additional flux uncertainty as a
multiple of the original unperturbed flux Fy; and A0, 1); a
draw from the unit normal distribution. For large values of s,
the normally distributed flux perturbation can cause the
perturbed flux values for some simulated objects to go
negative; the simulation treats these cases as nondetections
and removes affected objects from consideration, thus penaliz-
ing simulations with very large simulated flux uncertainty.

Figure 22 shows indications from this test. To aid inter-
pretation in terms of apparent magnitude, we also characterize
the sample standard deviation in apparent magnitude caused by
the perturbation (which we denote sy, ), displaying it alongside
the input scale s of flux perturbation; the quantity sy, is
plotted along the top axes in Figure 22. The rotation
curve badness-of-match statistic suggests that observed rotation
curve discrepancy can result from increased photometric
scatter for scale factor s 2 0.35 (in apparent magnitude,
Smag 2, 0.48), while the =’ distribution of the “metal-poor”
sample is brought into rough agreement with that observed, for
scale factor range 0.25 < s <035 (or in magnitudes,
0.30 S Smag S 0.48).

It is difficult to see how the “metal-poor” sample might be
subject to such a large additional photometric scatter. For
example, the additional photometric scatter is likely far larger
than the difference in photometric precision in the two samples
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from the SWEEPS measurements. Figure 23 shows the internal
photometric precision (defined as the rms of the apparent
magnitude measurements along the set of images) as a function
of apparent magnitude and 7’ for objects in the “metal-
rich” and “metal-poor” samples. The “metal-poor” population
shows only a slight increase in internal photometric uncertainty
compared to the “metal-rich” population, and both are very
small (on the order of a few mmag; these objects are well above
the photometric completeness limit for the SWEEPS survey).
While indeed the internal precision refers to the random
component of photometric uncertainty and not the absolute
photometric accuracy, a sample difference in photometric
uncertainty of ~0.3-0.5 mag seems highly unlikely for
these data.

A difference in extinction distribution between the
samples, characterized in any way,’' if large enough to bring
about the sy, ~ 0.3-0.5 mag additional scatter required,
would surely have led to additional observational conse-
quences that are not seen in these data. For example, the
observed F814W dispersion of the RCGs in the SWEEPS
data set is close to o (F814W) ~ 0.17 mag (Cl108). Even if all
this dispersion were due to extinction, which seems unlikely,
this would still be a factor 22 too low to bring about the
observed discrepancies between “metal-rich” and ‘“metal-
poor” samples.

When the depth of the bulge along the line of sight is
considered, the allowed contribution of differential extinction
to 7’ blurring becomes somewhat smaller. For example,
assuming that the bulge RCGs are scattered along this line of
sight by £0.50kpc allows room for only 0.1 mag of

3! For example, by a change in E(B — V), by a change in Ry, or by a
functional form such as introducing and varying a second parameter.
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Figure 24. Spatial distributions of the “metal-poor” (blue, left) and “metal-rich” (red, right) populations discussed in Section 3.5, over the ~3’ x 3’ of the BTS-
SWEEPS cross-matched field. In each panel, points represent the individual objects, while the filled contours indicate the KDE representation of the local density at
each point. In both panels, contours correspond to six equally spaced density levels. To aid visual comparison, the outer contour of the second-highest level from the
metal-poor population is plotted over the metal-rich distribution in the right panel. See Appendix D.1.

photometric blurring due to extinction of any prescription.
Since extinction effects would need to apply differentially
to the “metal-poor” sample compared to the “metal-rich”
sample to bring the two rotation curves into agreement, we
conclude that differential extinction effects are likely at least
a factor of 3-5 too small to account for the observed rotation
curve discrepancy.

It is also not clear why the “metal-poor” sample would be
subject to a strongly discrepant extinction distribution
(however parameterized) in the first place. The two popula-
tions are not strongly different in their projected distributions
on the sky (Figure 24), which would seem to argue against,
say, the “metal-poor” sample being located within a region
on the sky showing stronger, clumpier extinction than the
“metal-rich” sample. Additionally, the RCG apparent magni-
tude distribution in this field does not appear to be bimodal
(e.g., Clarkson et al. 2011; Nataf et al. 2013).

We point out that this test applies to the dispersion of
differential extinction, not to differences in the median
extinction between the two samples. Although a difference in
median Ry might affect the drawing of the “metal-rich” and
“metal-poor” samples using [m], [¢] (because those indices
are computed in terms of extinction ratios, which are
dependent on the prescription for extinction), it would not
by itself change the 7’ dispersion for a given population
(Ry variations are considered in more detail in Appendix E.5).
The #’ values for “metal-rich” and “metal-poor” populations
are both constructed by reference to fiducial ridgelines fit to
the observed populations in the SWEEPS CMD. While the
interpretation of a given ridgeline with a particular set of
population parameters (like [Fe/H], E(B — V), Fpin, Gpmin> and,
to a lesser extent for this population, age) does depend on the
median E(B — V), this does not impact the fiducial ridgelines
of the observed median populations on the SWEEPS CMD.

We thus reject additional photometric scatter as a cause for
the “metal-rich” and the “metal-poor” samples to be drawn
from the same kinematic population, because, whatever the
cause, its likely magnitude is much too low to have gone
unnoticed elsewhere in these data.
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D.2. Differences in Binary Fraction

If the “metal-poor” sample has a highly discrepant binary
fraction or binary companion mass ratio distribution from the
“metal-rich” sample, then this might produce a population with
larger distance spread, where the additional inferred distance
scatter would be biased to closer distances than the mean
population—qualitatively similar to the trends observed (e.g.,
Figure 7).

The binary fraction Fy;,, minimum binary (initial) mass ratio
Gmin> and indeed the shape of the distribution of mass ratio g are
not known for the bulge (see, e.g., Calamida et al. 2015) and
are difficult to constrain observationally for the sample selected
for the present proper-motion study (e.g., Figure 2). A complete
search of (Fyin, g,,;,) parameter space, and indeed of the form of
the mass ratio distribution, is beyond the scope of the present
investigation. Instead, we characterize statistically the distribu-
tion of Amy,, due to unresolved binaries, for the CMD region
of interest to this study (Figure 2), and draw from this
distribution F(Amy,,) for each realization of the Monte Carlo
trial.

To maximize the impact of a difference in binary fraction
between the “metal-rich” and “metal-poor” samples, we
assume for the purposes of this test that the “metal-
rich” population has no binaries at all, and we perturb it using
an unresolved binary fraction to approximate the ‘“‘metal-
poor” population. (This thus allows the excess binary fraction
to be tested in the range 0 < Fyi, < 1; if we assume that the
“metal-rich” sample has a binary fraction of 0.3, then only tests
in the range Fyi, < 0.7 would be meaningful.) We also assume
for this test that it is only the population of unresolved binaries
that differs between the two samples (i.e., there is no difference
in metallicity distribution between the two samples).

Version 5.0.1 of the BaSTI ** suite of simulation tools and
stellar population models (Pietrinferni et al. 2004, 2006) is used
to produce a representative set of distributions F(Amy,), to
characterize for the Monte Carlo draws. Thanks to the
capability of BaSTI to accept user-defined random number

32 http:/ /albione.oa-teramo.inaf.it/
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Figure 25. Characterization of the distribution of apparent magnitude perturbation due to unresolved binaries, using the BaSTI suite of models and stellar population
tools. Bottom left: synthetic stellar populations in the SWEEPS filter set. Red points show the simulation without binaries, gray the population with binaries. Faint
points show a representative set of the entire simulation in each case; dark points show the objects that fall within the CMD selection region in the presence of
unresolved binaries. Top left: Amy,;, due to the presence of unresolved binaries, for objects only within the selection region. Top right: distribution of Amy;, (on a log
scale), with histogram boundaries at the upper end of each bin. This panel includes objects not assigned a binary companion in the simulation. Bottom right:
normalized distribution of Amy;, for objects assigned a binary companion (gray shading). The green open histogram shows the distribution of draws from a

nonparametric resampling of F(Amy;,). See Appendix D.2.

seeds, simulations that are almost identical except for small
changes in input parameters can be run. This allows us to
compare synthetic populations on a star-by-star basis, with and
without the addition of unresolved binaries.*

To combine the sophistication of BaSTI with the speed
necessary for Monte Carlo trials, the distribution
F(Amyy,) itself is characterized nonparametrically, using the
method outlined in Ivezi¢ et al. (2014, their Section 3.7)—
and thus does not depend on a functional form for F(Amp,).
This resampling is 10°° times faster than running a
BaSTI simulation for each iteration and brings into reach
Monte Carlo exploration of the impact of binaries for our
purposes here.

BaSTI simulations are run for four choices of the minimum
binary initial mass ratio: ¢q,;, = (0.0, 0.3, 0.5, 0.7). The

33 The populations returned by BaSTI are not quite identical for identical
random number seeds: ~1/1000 of the objects in the binary-free simulation are
missing in the binary-equipped simulation. Thus, re-matching of rows across
simulations is required even for identical seeds.
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“bulge” star formation history (Molld et al. 2000) within
BaSTI is used to populate the sample, with scaled-to-solar
heavy-element abundances and the Kroupa et al. (1993) initial
mass function. Absolute magnitudes are converted to apparent
magnitudes using a fiducial distance and reddening. This
allows F(Amy;,) to be characterized specifically for the
population we have selected for proper-motion study. For
Gy = 0.0, the distribution F(Amy;,) turns out to closely
resemble F(Amy,) = 1/Amy,, while for g, > 0 the dis-
tribution becomes more complicated and nonparametric
resampling is preferred (Figure 25).

In none of the cases (g,,;, = 0.0, 0.3, 0.5, 0.7) do we find
that the presence of an additional binary population can
account for the difference between the observed “metal-
rich” and “metal-poor” rotation curves. (Figure 26 shows the
cases ¢, = 0.0 and ¢_;, = 0.7). Only the skewness of the
m/ distribution ever approximates that of the “metal-poor”
population (at Fpy, = 0.5), while the rotation curve and
7' spread do not overlap for any binary fraction.
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We therefore conclude that an excess of unresolved binaries
in the “metal-poor” over the “metal-rich” population is highly
unlikely to be responsible for the difference in rotation curves.

Appendix E
The Impact of Differential [Fe/H] Dispersion on
Photometric Parallax

Under a model in which the bulge contains at least two
metallicity components, with differing [Fe/H] dispersions, the
spread in inferred photometric parallax within identified
“metal-poor” and “metal-rich” samples will also differ, even
if there is no difference in intrinsic distance distribution along
the line of sight. Here we examine the likely magnitude of this
systematic.

The method is outlined in Appendix E.1, with simulated
population components described in Appendix E.2. In the
course of this investigation, it became apparent that the
widely used BaSTI simulation framework truncates samples at
[Fe/H] values well within the limits of likely values in the
SWEEPS field; the technique used to characterize absolute
magnitude spread in the presence of this truncation is described
in Appendix E.3. Finally, the differential scatter between
“metal-rich” and “metal-poor” populations is presented in
Appendix E.4. (The BaSTI truncation itself is characterized in
Appendix F.)

E.1. General Method

To estimate the differential scatter in photometric parallax
produced by differing [Fe/H] dispersions between “metal-
rich” and “metal-poor” samples, a synthetic composite stellar
population is produced for the SWEEPS field by sampling
BaSTI simulations (computed for all three cameras and
resampled in the manner of Appendix D.2), which include
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the effects of age, [Fe/H] spread, and unresolved stellar
binaries. The synthetic populations are perturbed by photo-
metric uncertainty (in all seven filters), photometric parallax,
and reddening, where the width of the distributions in all
three quantities can be specified separately for each
population.

This produces a SWEEPS CMD and [¢], [m] distribution for
the synthetic population. Synthetic objects are selected for
further “study” in a similar manner to that for the real data (e.g.,
Table 3); in particular, synthetic SWEEPS CMD objects must
fall within the selection box in the SWEEPS filters (Figure 2).
The surviving synthetic objects are then classified as likely
“metal-poor” and “metal-rich” populations in the same manner
as for the observed data (using the GMM components in
[t], [m] that were fitted to the real data), isolating “observed”
samples of “metal-rich” and “metal-poor” objects. In this
manner, the synthetic samples are isolated in a similar fashion
to those drawn from the real data.

Finally, best-fit loci are determined for the model absolute
magnitudes of the synthetic “metal-rich” and “metal-
poor” samples, and the differences AM, from these loci are
determined for every object in the samples. The model absolute
magnitude is used rather than the apparent magnitude because
we wish to isolate the impact of metallicity spread on intrinsic
magnitude scatter—i.e., before distance, reddening, and
photometric uncertainty have perturbed the measurements
(which impacts the sample selection), but including the
intrinsic effects of age, [Fe/H], and binarity.

Modeling the selection cuts on the synthetic samples requires
simulating the composite stellar population of the
SWEERPS field. This field is somewhat complex, consisting of
at least three distinct populations (bulge, local disk, halo), each
of which could well consist of multiple subpopulations or a
continuum.



THE ASTROPHYSICAL JOURNAL, 858:46 (53pp), 2018 May 1

14
Median SWEEPS
*  —=— Median simulation
Bulge, Metal-rich
Bulge, Metal-poor
Halo, [Fe/H], = 2.33
Halo, [Fe/H], = -1.67
Local disk

F606Wacs
F606Wacs

05 10 15
F606Wacs-F814Wacs

Clarkson et al.

Median SWEEPS
—ea— Median simulation 19
SWEEPS

Median SWEEPS
—a— Median simulation
SWEEPS

F606Wacs

125 130 1
F606Wacs-F814Wacs

20 110 115 120

F606Wacs-F814Wacs

Figure 27. Composite simulated SWEEPS population. Left panel: synthetic populations. Red and blue circles show metal-rich and metal-poor bulge components,
respectively, violet and gray triangles show the halo components, and cyan squares show the local disk populations. Middle and right panels: observed
SWEEPS CMD, with the median simulated (black line and squares in all three panels) and SWEEPS (yellow line and circles in all three panels) populations. See

Appendix E.2 for details.

Full population decomposition presents a formidable challenge
(e.g., Gennaro et al. 2015) and is complicated by the difficulty in
adequately accounting for extinction across the broad wavelength
range of the BTS photometry in the inner bulge region (e.g., Nataf
et al. 2016). To produce a reasonable approximation to the
selection effects at work in the SWEEPS field, a multicomponent
stellar population is instead simulated with parameters drawn from
the literature and the [Fe/H] spread estimated in this work
(Appendix C). A set of about a dozen synthetic populations with
various parameter settings are simulated using BaSTI, with
typically five components from this set combined appropriately to
produce a synthetic composite population for the SWEEPS
field, with mixture parameters tuned by hand to provide an
approximate match to the observed SWEEPS CMD and
[¢], [m] distribution.

E.2. Synthetic Population Components

All population components used the same prescription for
binaries, with binary fraction 0.35 and minimum binary mass
ratio 0.0. The initial mass function followed the Kroupa et al.
(1993) prescription for all components over the BaSTI default
mass range (0.1 < M/M, < 120). Convective core over-
shooting was not selected for any model component, and
mass-loss parameter 77 = 0.4 was used throughout. When not
using a predetermined star formation history supplied by
BaSTI, the star formation histories were specified as a series of
single bursts at given ages, with [Fe/H] described as a
Gaussian with a user-specified centroid and standard deviation.
Specific details for various population components follow
below.

For the foreground disk, the formation history of Rocha-
Pinto et al. (2000) was used (the default “local disk” scenario
within BaSTI), typically forming 5%-10% of the stars in the
simulation sets.

Stellar halo components were simulated using the bimodal
[Fe/H] distribution reported by An et al. (2013) from Sloan
Digital Sky Survey photometry; this model consists of a very
metal-poor component centered at [Fe/H] ~ —2.33 and another
slightly less metal-poor component centered at [Fe/H] ~
—1.67. For a bimodal bulge population following any of
the GMM fits to our spectroscopic data, or for the [Fe/H]
distribution of Zoccali et al. (2017) near the SWEEPS field, this
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separate halo component is necessary to populate the regions in
[#], [m] space for objects with [Fe/H] < —2.0.

Bulge components were constructed separately as normally
distributed [Fe/H] distributions specified through the
BaSTI web interface, using the characterization presented in
Appendix C, for both the two- and three-component GMM
decompositions. For components less metal-rich than
[Fe/H], < + 0.3, separate runs were simulated using the
“scaled-to-solar” and “a-enhanced” options within BaSTI in
order to allow some exploration of «-enhancement on
population spread in the [¢], [m] diagram. A variety of age
prescriptions were attempted, mostly to improve the match at
the bright end of the SWEEPS CMD, either by ascribing a
single burst of star formation to each metallicity or
by assigning several bursts to each metallicity (e.g.,
bursts at 5.0, 6.0, and 7.0Gyr for a component with
[Fe/H], = —0.42). We have not yet explored more sophis-
ticated age—metallicity prescriptions through user-defined
star formation histories (e.g., Haywood et al. 2016; Bensby
et al. 2017).

The more continuous bulge star formation history of Moll4d
et al. (2000, used as a default in BaSTI) was also tried, for
“scaled-to-solar” isochrones, for “a-enhanced” isochrones, and
for varying admixtures of the two.

We have not yet explored a separate “thick-disk” component
in this context. The metal-poor wing of the bulge distribution or
the metal-rich wing of the halo component could mimic such a
population in the [¢], [m] diagram, and we do not make the
distinction here.

Figures 27 and 28show examples of the synthetic
populations thus produced. None of the population mixtures
that we have produced quite reproduce both the observed
SWEEPS CMD and the [t], [m] diagram, although in view of
both the challenges of extinction characterization and
apparent simulation truncations imposed by BaSTI itself
(Appendix E.3), full reproduction is likely to be difficult. The
basic two-component bulge we simulate here produces an
[t], [m] distribution that is much more strongly bimodal than
that observed (e.g., Figure 3), while the 10-component
“bulge” star formation history within BaSTI (Molld
et al. 2000) produces an [t], [m] distribution that is too
smooth compared to that observed.

Several methods were attempted to bring the simulated
[t], [m] distribution into closer agreement with that of the
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with those observed. See Appendix E.2 for details.

observed data in Figure 3. One simple ansatz is to simply
multiply the BTS estimated photometric uncertainties by a factor
of 2 before selection and computation of [¢], [m] (Figure 28,
top right panel). Another is to apply Gaussian blurring in
[] and [m] separately (bottom middle panel of Figure 28).
Varying Ry with a Gaussian of width og, = 0.52 does bring the
marginal distribution reasonably close to that observed (bottom
right panel of Figure 28), although the [¢], [m] distribution that
results is distorted compared to the observed sample (particularly
the “metal-rich” sample), and in addition the required og, is at
least a factor of ~2 larger than that suggested by the
SWEEPS CMD (Appendix E.5, which also shows the
[#], [m]-blurring effect due to Ry variations that are compatible
with the SWEEPS data).

For the purposes of estimating the impact of varying
[Fe/H] distribution on relative photometric parallax variations,
we retain the two-component bulge model with and without
BTS uncertainty scaling, for further investigation; the former is
consistent with estimated [Fe/H] distributions and estimates of
photometric uncertainty, while the latter is the “broadened”
option among those tried that closely resembles the observed
distribution (Figure 3).
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E.3. Characterizing Excess Variability in the
Presence of Truncation

While conducting tests on the simulated data sets, it quickly
became apparent that samples generated with the current
version of BaSTI’*show truncation at extremes of both
high and low metallicity, leading to a hard edge in the CMD
of the simulated population that has no counterpart in the
reported [Fe/H] distribution. This truncation, characterized in
Appendix F, impacts the metal-rich simulated bulge sample
more strongly than its metal-poor simulated counterpart and
thus could artificially enhance the discrepancy in absolute
magnitude breadth between the metal-rich and metal-poor
simulated components.

This hidden systematic complicates efforts to characterize
the excess magnitude scatter due to differing [Fe/H] distribu-
tions, with much of the most metal-rich end of the metal-rich
simulated sample assigned apparently incorrect magnitudes
(absolute and apparent). We therefore adopt a restricted-sample
estimate of the magnitude scatter, by sampling only the fainter
side of the magnitude distribution for both samples in the

34 BaSTI version 5.0.1.
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Table 10
Polynomial Coefficients Relating the Flux Spread s (Appendix D.1) to Apparent Magnitude Scatter oy,; (Equation (9)), over the Domain 0.01 < oy,; < 1.0
Coeff i=17 6 5 4 3 2 1 0
a; 0.2621 1.9750 6.0299 9.5353 8.1928 34773 1.2929 —0.2817
b; 0.6190 4.3495 11.7411 14.7695 7.7084 0.0234 0.1323 0.1298

Note. The forms used are log,(oni) = > b; loglo(s)i and log;((s) = >; loglo(ahi)i . See Figure 29 and Appendix E.3.

comparison. Specifically, we use the quantity op; defined by>”

> (my — m)?,
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where, for the special case of a large, strictly symmetric
distribution, oy; closely approximates the sample standard
deviation. A practical challenge is to identify the median
magnitude 7 from a truncated asymmetric distribution. For
these simulations, 77 is estimated by discarding the most
negative Am samples (thus discarding objects near and outside
the truncation limits) and fitting a Gaussian function to the
histogram of Am values. This fit is only used to estimate 7,
which thus allows oy; to be estimated following Equation (9).
This then allows the restricted-sample scatter op; to be
estimated for the metal-poor and metal-rich samples separately,
and the excess difference to be characterized as the quadrature
difference between the two.

The final step is then to convert the excess scatter oy;
estimated from the simulated population components to the
additional flux scatter s felt by the metal-poor sample compared
to the metal-rich sample. To enable this conversion, the
relationship between restricted-sample scatter oy,; and the flux
perturbation scale s that generated it was determined by
simulation. Synthetic populations with perturbation flux
distribution were produced following Equation (8), subject to
the same censoring for negative flux as before (Appendix D.1).
The apparent magnitude scatter oy,; was then found for each
synthetic population as described above (and as performed for
the simulated BaSTIdata sets). Finally, the relationship
between op; and s was characterized by fitting a seventh-order
polynomial in both directions. Table 10 and Figure 29 show
this characterization. This allows us to relate the restricted-
sample scatter found from BaSTI simulations back to the flux
ratio perturbation scale s, and finally to compare the scale of the
perturbation suggested by differing [Fe/H] distributions to the
additional scale of flux perturbations s that our observational
data would require if the “metal-poor” sample really were a
blurred version of the “metal-rich” sample.

E.4. Differential Photometric Parallax Dispersion Due to
Differential [Fe/H] Dispersion

We are finally in a position to estimate the additional scatter
in absolute magnitude due to differential metallicity scatter.
Figure 30 shows the results of applying the selection criteria to
the simulation including the two-component bulge model, a
two-component halo, and the local disk component.

Figure 31 illustrates the characterization of absolute
magnitude scatter oy,;, while Table 11 shows the evaluation of

35 Equation (9) uses 1/Ninstead of 1/(N — 1) because the median m is
determined from a fit to a larger sample than the set over which oy, is evaluated.
In practice, with N(m > m) always larger than a few hundred objects, the
distinction is unimportant.
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Figure 29. Charting the relationship between the flux standard deviation
s (Appendix D.1) and the apparent magnitude scatter oy,; for truncated samples
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characterized by oy,;. Standard uncertainty propagation predicts s ~ ¢/1.086
(with o the apparent magnitude standard deviation); in practice, we fit
functional forms to transform between s and oy,;. The top panel shows s and
oy along with the functional forms in both directions (seventh-order
polynomials in log;o-space). The bottom panel shows fractional residuals when
oy, is used to predict s (residuals in the reverse direction are not shown); the
polynomial approximation f; is accurate to better than 2% over most of the
range of interest. See Appendix E.3 and Table 10.

the excess flux scatter s for “metal-poor” compared to “metal-
rich” samples. Two simulated populations were evaluated in
this manner: one including the two-component bulge model,
and the other with the BTS uncertainties multiplied by a factor
of 2 before selection to broaden the distribution in [z], [m]. In
both cases, the excess fractional flux scatter s is less than 0.1;
we find s ~ 0.09 for the two-component bulge model, while
s =~ 0.07 for the enhanced-uncertainty version of this model.

We contacted the authors of the BaSTI web tools regarding
its internal truncation (detailed in Appendix F). In response, S.
Cassisi (2017, private communication) kindly added a high-
metallicity point to BaSTI’s internal metallicity grid (since in
BaSTI version 5.0.1 the metallicity range covered by the
simulator is more restrictive than that covered by the isochrone
set) and recomputed sets of synthetic populations using
the updated version of the simulator.”® Visual inspection of
the[¢], [m] distribution and the SWEEPS CMD drawn from the
Cassisi simulations indicates similar behavior to those from
v5.0.1, except without the sharp edges truncating the metal-rich
end of the synthetic population.

36 We refer to these new simulations as the “Cassisi” simulations and to the
simulations ran using the current publicly available BaSTTI suite as “v5.0.1.”
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Figure 30. Estimating the ridgelines for simulated objects that would be selected in the “metal-poor” (left panel) or “metal-rich” (right panel) samples. In each case
absolute magnitudes are plotted in the SWEEPS filters. The component of origin for each simulated object surviving selection criteria is indicated by color and

plotting symbol. See Appendix E.4.

In this paper we retain the statistics derived using
BaSTI v5.0.1 since that is the version currently available to
the community. However, the comparison with the Cassisi
version is instructive. Application of the half-sample techni-
ques of Appendix E.3 to both the Cassisi and v5.0.1
simulations yielded highly similar results (op; differing by
<4%), as might be expected since this measure uses the side of
the AM distibution far from the truncation limit. The Cassisi
simulations also allow a direct estimate of the accuracy of the
one-sided measure adopted in Appendix E.3, by comparing op;
to the AM standard deviation of the objects in the dominant
component of the Cassisi simulation (see Figure 30 for the
dominant and “background” components for metal-rich and
metal-poor simulated populations). In the Cassisi simulations,
the AM standard deviation is roughly 20% smaller than the
estimate oy;, suggesting that our estimates of the excess
photometric scatter in Table 11 may be overestimates.

We therefore find that the combination of differing
metallicity spreads between ‘“‘metal-poor” and “‘metal-rich”
samples and differing selection effects in both the [¢], [m]
distribution and SWEEPS CMD contributes differential flux
scatter that is not larger than o},; ~ 0.1 mag, or additional
flux standard deviation s ~ 0.08. This additional scatter is a
factor of 3 too small to bring the observed “metal-poor”
and “metal-rich” proper-motion-based rotation curves into
agreement by itself (Figure 22), and we conclude that the
apparent difference in proper-motion rotation curves between
the two samples is not an artifact of differences in the
underlying [Fe/H] distribution.

As a second check, we can compare the [Fe/H] distribution
of the objects classified as “metal-poor” and “metal-rich” with
the simulated [Fe/H] values for the relevant bulge model
components. We find that indeed the misclassification rate in
this synthetic population-based simulation appears to be low
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(Figure 32). Possible contaimination is explored further in a
purely empirical manner in Appendix G.

E.5. The Impact of Ry Variations

The framework of this appendix also allows us to investigate
the impact of Ry variations on [¢], [m]-based determinations.
The extinction-free indices [¢], [m] assume a particular extinc-
tion prescription (Cardelli et al. 1989, using Ry = 2.5). While
[t], [m] are therefore insensitive to variations in E(B — V) for
a particular value of Ry, variations in Ry could impact the
distribution of points in the [t], [m] diagram, by altering the
relationships between apparent magnitudes in the BTS filters
and those assumed when computing [¢], [m].

We appeal to the SWEEPS CMD to estimate limits on the
magnitude of Ry variations in this field. Assuming that the
distance distribution due to the physical depth of the bulge can
in this field be characterized by a Gaussian with width
parameter o, kpc, the observed apparent magnitude scatter of
RCGs in this field then sets an upper limit on Ry variations for
assumed E(B — V). In the SWEEPS data set, the observed
F814W dispersion of the RCG is o(F814W) = 0.17
mag (Cl08).

For this appendix we adopt E(B — V) = 0.5 (Cal4) as a
representative value (the implied Ry variations would become
smaller for larger E(B — V)). The extreme case of distance
dispersion, o4, = 0, then admits Ry variation of og, ~ 0.45.
However, the bulge has nonzero depth along the line of sight;
picking a representative distance distribution of o; ~ 0.5 kpc
suggests that variation closer to oz, ~ 0.25 is more likely. Both
estimates for og, are conservative upper limits, since they
ascribe none of the observed RCG apparent magnitude
dispersion to photometric uncertainty, luminosity variations
within the RCG sample, or E(B — V) variation.
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Figure 31. Characterizing the magnitude scatter oy,; (Equation (9)) for simulated populations in the presence of truncation. The left column shows the simulated metal-
rich population, the right column the simulated metal-poor population. White shaded bars in each figure show objects with [Fe/H] outside the adopted
BaSTI metallicity range (using scaled-to-solar isochrones for the metal-rich column and a-enhanced isochrones for the metal-poor column). Rows show the full
distribution (top), objects with simulated [Fe/H] within the nominal ranges (middle), and those outside the nominal ranges (bottom). The gray regions in the middle
and bottom rows (delimited by the solid vertical line) show regions of AM excluded from the Gaussian fits to the distributions (smooth lines). The fitted median of
AM is marked by a transition from solid to dashed line in the curves. Before characterization, each simulated sample is divided into a dominant and secondary
component; the secondary component, mostly made up of unresolved binaries and labeled “Background” in the panels here, is excluded from further consideration.
Note that (i) both the metal-rich and metal-poor samples include objects with reported [Fe/H] above the adopted upper limit; (ii) the truncation appears to impact
objects even with [Fe/H] nominally within the adopted [Fe/H] limits, particularly for the metal-rich simulated population; and (iii) the strong truncation in the metal-
rich sample leads to a large gap between the dominant and secondary components. See Appendix E.4.

Table 11
Characterization of the Additional Absolute Magnitude Scatter Due to
[Fe/H] for Simulated Metal-rich and Metal-poor Populations

Component Ohi K opi(broadened) s(broadened)
Metal-poor 0.137 0.112 0.153 0.124
Metal-rich 0.103 0.087 0.119 0.099
Excess 0.090 0.071 0.097 0.075

Note. The quadrature difference between the two samples is reported in the
final line. oy; reports an estimate of the asymmetrically sampled absolute
magnitude scatter (Appendix E.3), while s reports the scatter in the flux
perturbation due to [Fe/H] spread. The first column pair shows results for the
simulated populations and estimated uncertainties; the final column pair shows
results for [t], [m] distribution broadened to more accurately match the
observed distribution. See Appendix E.4.

To estimate the impact of Ry variation on the
[#], [m] distribution (and thus sample selection and cross-
contamination), a synthetic population was constructed using
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BaSTI population components tuned to the estimated metalli-
city distribution for this field. Full details of this procedure,
which was implemented to explore metallicity-dependent
selection and characterization systematics (Section 5.1), can
be found in Appendix E.

Figure 33 shows the comparison of a simulated [f], [m]
population, with and without Ry variations at the og, = 0.25
level admitted by the SWEEPS data set. For each relevant
WECS3 filter, the scale factors Ay /E (B — V) were estimated by
linear interpolation in Ry using information shown in Table 4.
The simulated magnitudes were thus perturbed into “observed”
magnitudes using different R, values for each star, but the
[¢], [m] were computed using the «, § values appropriate for
Ry = 2.5. This then mimics the use of a single Ry value to
compute [f], [m] for a population that in reality shows
Ry variations.

Comparing the synthetic [t], [m] distributions with and
without Ry variations (Figure 33), it seems unlikely that
Ry variations at the level admitted by the SWEEPS CMD
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Figure 33. Estimating the impact of Ry variations in the [¢], [m] diagram. The
top middle panel of Figure 28 shows a simulated [¢], [m] distribution using
estimated photometric uncertainties and [Fe/H] distribution, and with
Ry = 2.5 for all objects. This figure shows the same simulation, but this time
varying Ry by og, = 0.25. The 1o ellipses from the GMM decomposition of
the observed data are shown to allow rough comparison between this
simulation and the true data set, and the top and side panels show the marginal
distributions of [¢] and [m], respectively. See Appendix E.5.

can contribute a strong effect on GMM fitting or sample
selection in [¢], [m]; the impact of Ry variations is simply too
small. We therefore proceed under the assumption that indeed
Ry = 2.5 for all objects in the SWEEPS field of view.
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Appendix F
Testing the Behavior of the BaSTI Stellar
Evolutionary Models

Because stars in the SWEEPS field likely span a very wide
[Fe/H] range, including possibly objects outside the ranges
traced by the BaSTI evolutionary models, we test the behavior
of the BaSTI synthetic population framework when objects
with very low or very high metallicities are simulated.

We find that BaSTI v5.0.1 appears to be imposing an
internal truncation on the simulated populations, probably on
[Fe/H] or on an internal variable that correlates with
metallicity (for clarity, we refer to internal limits as [Fe/H]
limits throughout this section). This in turn leads to a
discrepancy between the requested and simulated population
and between the reported [Fe/H] values in the simulated output
and the resulting population. Since BaSTI is used very widely
in studies of resolved stellar populations (with over 600
refereed citations), we report here our investigation into this
truncation.”’

A variety of synthetic populations were simulated using
BaSTI’s “user-specified SFH” option. This allows the user to
build a population from a series of bursts of star formation,
with the mean and standard deviation [Fe /H] specified for each
population, as well as the number of years elapsed since the
burst took place. In addition to the components that might
make up the scene in the SWEEPS field of view (e.g.,
Appendix E.2), we simulated a number of ‘“test-pattern”
populations, with components regularly (or nearly regularly)
spaced in [Fe/H].

The behavior of the CMD in the SWEEPS filters is then
examined for consistency with the specified [Fe/H] distribu-
tion and also the [Fe/H] values reported in the simulated
population. For regions in the CMD approximately near the
selection region used in this communication, the absolute
magnitude difference AM is computed from a fitted median
sequence (in much the same manner as is done for the observed
population), and the distribution of AM is examined for hard
edges that are not present in the requested [Fe/H] distribution.

The BaSTI documentation was used to estimate median
[Fe/H] values near the limits of its metallicity range.”®
Specifically, we assumed the appropriate [Fe/H] limits to be
—2.27 < [Fe/H] < +0.40 for scaled-to-solar models and
—2.62 < [Fe/H] < 4+0.05 for a-enhanced models. Results
for a representative set of test cases are reported below, which
suggest the following effects:

1. Any bursts of star formation with specified median
[Fe/H] outside internal limits are clipped to these
limits before generation of the stellar population
(Appendix F.1).

2. If the specified [Fe/H] distribution leads to individual
objects with [Fe/H] outside the limits, the absolute
magnitudes of these objects are truncated internally, but
the reported [Fe/H] values appear to be unaffected,
leading to a discrepancy between reported and applied
[Fe/H] values (Appendix F.2).

37 The analysis and figures in Appendix F can be reproduced using the
notebook 2017-09-08_quicklookBaSTi_truncation.ipynb in the
repository at https://github.com/willclarkson/bastiTest. This repository
includes the full set of simulations and input parameters, as well as relevant
methods used to generate the figures in this section.

3 See http: //albione.oa-teramo.inaf.it/main_mod.php and links therein.
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Figure 34. Testing the relationship between specified and simulated metallicities when bursts of star formation with a very wide range of median [Fe/H] values are
requested with the BaSTI interface. Top left: specified and simulated [Fe/H] median values. The green horizontal lines show the median [Fe/H] values for the bursts
of star formation, with the gray points indicating [Fe/H] values reported in the output simulation. In this example, specified bursts are ordered from bottom to top and
left to right in the simulated objects. Bottom left: absolute magnitude CMD in the SWEEPS filters of the resulting population, color-coded by reported [Fe/H]. The
black dots and line refer to the fitted fiducial in the selection region and a polynomial fit to the fiducial, respectively. Top right: absolute magnitude offsets AM from
the adopted fiducial, ordered by SWEEPS color, with symbols color-coded by [Fe/H] reported in the simulated population. Bottom right: histogram of AM. Here the
specified median [Fe/H] values were {—3.0, —2.5, —2.0, —1.5, —1.0, —0.5, 0.0, 4-0, 4, +-0.5}, all with specified spread orre/u; = 0.0001 dex. Populations with
[Fe/H] < —2.3 or [Fe/H] 2 +0.4 seem to have been wrapped by BaSTI to the metallicity limits. See Appendix F.1.

3. The truncation behavior appears more complex than a
simple clipping or substitution; discrepant objects can
appear quite deep into the main body of the selected
population, and the effective [Fe/H] limits might differ
from those suggested by the documentation
(Appendix F.3).

F.1. BaSTI Selection Applied to Median Populations

To investigate whether BaSTI is applying the truncation to
the median population in a requested sample, test populations
were simulated for bursts of star formation of equal magnitude
but with very narrow [Fe/H] distributions. Figure 34 shows
an example for a scaled-to-solar set of isochrones, with
[Fe/H] = {-3.0, —2.5, —2.0, —1.5, —1.0, —0.5, +0.0, +0,
4, +0.5}, all with spread oy = 0.0001 dex to isolate
selection effects applied to the mean populations in each case.
The two most metal-poor populations and the single most
metal-rich population are found to be forced away from their
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specified values, probably to some internal limit. Reading off
the figure, the most metal-poor populations seem to be brought
up to [Fe/H] =~ —2.3, with the most metal-rich brought down
to [Fe/H] ~ +0.40. These values are entirely consistent with
the [Fe/H] limits suggested by the BaSTI documentation
referenced earlier.

This suggests that BaSTI enforces [Fe/H] limits on the
median populations requested in a simulation.

F.2. BaSTI Truncation near the [Fe/H] Limits

To investigate whether BaSTI applies a truncation to [Fe/H]
values that are carried outside internal [Fe/H] limits owing to the
specified population spread, test populations were simulated
including a single population well away from the limits and one
component each just inside the two limits. Components were
specified with [Fe/H] = {—2.5, —1.2, +0.05}, all with speci-
fied spread og./m) = 0.1 dex, to ensure that the two components
near the [Fe/H] limits each include substantial numbers of
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Figure 35. Testing the behavior of BaSTI simulations for populations with [Fe/H] close to the internal boundaries. Left column: panels and symbols as in Figure 34,
with specified bursts ordered bottom to top and their simulated populations ordered left to right. Here a three-component a-enhanced population is simulated, with
[Fe/H] = {—2.5, —1.2, +0.05}, all with specified spread o(pc/m = 0.1 dex. The metal-poor and metal-rich populations show sharp cutoffs in both the CMD and the
AM distribution, which are not present in either the central population (well away from the [Fe/H] limits) or the reported [Fe/H] distributions of the metal-poor and
metal-rich populations. (Curvature in the metal-poor hard edge is likely due to differences in the shape of the median population for [Fe/H] = —2.5 and that for
[Fe/H] = —1.2.) The simulated magnitudes of the resulting populations show hard edges at the metal-rich and metal-poor ends, suggesting truncation in the delivered
populations. Curiously, however, there is no such truncation in the corresponding reported [Fe/H] values. This suggests that a truncation is being applied after the

assignment of [Fe/H] values to simulated objects. See Appendix F.2.

objects outside these limits, while the middle population has very
few such objects.

Figure 35 shows the resulting simulation. Curiously, although
the [Fe/H] values reported in the simulated populations show
no truncation, the CMD and the simulated absolute magnitudes
quite clearly do show truncation, with a hard edge at both the
upper and lower [Fe/H] extrema.

We therefore find that BaSTI does not truncate [Fe/H]
values at the stage of assignment to simulated objects, and
these nontruncated [Fe/H] values are carried through to the
output simulated population. However, a truncation is applied
at some stage before the absolute magnitudes are included in
the simulated population. This results in both a hard edge to the
distribution of simulated absolute magnitudes and a discre-
pancy between the reported [Fe/H] values and the absolute
magnitudes in the simulation output.

F.3. BaSTI Truncation near the Metal-rich Limit

To chart the behavior of the truncation near the [Fe/H] limits
in more detail, we simulated a single test population near the
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metal-rich limit. Figure 36 shows the result for a scaled-to-solar
component with [Fe/H] = +0.24 and scatter ope/n; = 0.19.
In this case, the truncation appears to be quite dramatic, with a
narrow, highly overrepresented component in the AM
distribution.

However, the behavior of the simulator near an [Fe/H]
limit is not as straightforward as a simple substitution of
the [Fe/H] limit for all objects beyond it. Figure 31 shows
a simulated metal-rich population partitioned by [Fe/H],
which allows us to distinguish objects that were assigned
[Fe/H] values above the metal-rich limit (and thus would be
assumed to be truncated). Objects with outlier [Fe/H]
values do not only appear at the location where absolute
magnitudes pile up; a substantial fraction show magnitudes
deeper into the main population (see the bottom left panel of
Figure 31).

That the pileup implying truncation is also observed at the
metal-rich edge of the population with simulated metallicities
within the limits according to the BaSTI documentation
suggests that the effective metallicity limits may differ from
those documented; see the middle left panel of Figure 31. (We
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Figure 36. Charting detailed behavior of BaSTI truncation near the metal-rich limit. Panels and symbols are as in Figure 35; here a single scaled-to-solar component is
simulated with [Fe/H] = +0.24 and scatter ojge/n; = 0.19. A strong pileup is observed at the bright end of the AM distribution (curvature in this component is likely
due to systematics in the determination of the fiducial ridgeline, which was determined from the simulated CMD, as would be the case for observed populations, rather
than specified using an isochrone). Again, while a strong truncation is observed in the simulated absolute magnitudes, no such hard edge is present in the reported

[Fe/H] values. See Appendix F.3 and Figure 31.

have not yet dissected this simulated population by binarity,
which might offer another avenue for objects to wander into
truncation territory.)

We therefore find that the internal truncation applied by
BaSTI is not limited to a simple pegging of values to an
internal boundary. The behavior probably necessitates some
sort of selection on AM to produce a cleaner unaffected
sample. We adopt one such approach in Appendix E.3.

Appendix G
Cross-contamination in the [f], [m] Diagram

We consider here the mixing of the “metal-rich” and “metal-
poor” samples (and thus rotation curves) due to cross-
contamination in the [¢], [m] space from which the two samples
were drawn (Section 5.2).

While the formal membership probability threshold
Wi > 0.8 was chosen to be somewhat conservative, some
amount of sample contamination in [¢], [m] is highly likely.
Since the ([#], [m]) each represent flux ratios constructed from
photometry in three filters, it is likely that objects best
characterized at one side of the abundance range for the bulge
might be classified to an object in the other owing to
photometric uncertainty. In principle, a nearly flat rotation
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curve for one sample could be polluted by samples from
another sample with a large-amplitude rotation curve, and
vice versa, sufficiently to weaken the trends in the high-
amplitude sample while imprinting a signal on the other that is
not in fact present.

A rigorous exploration of the -cross-contamination in
(#], [m]) requires a somewhat involved set of computations.
For example, flat priors in observed flux (for each of the five
filters used in BTS) are unlikely to translate into flat priors in
(1, [m]) space, as suggested graphically by the degeneracy
exhibited by very metal-poor populations in the ([¢], [m])
diagram (e.g., Brown et al. 2009). To properly account for
cross-contamination likely requires simulations of the under-
lying metallicity and temperature distributions (for which a
range of shape parameters for the distributions would also need
exploration) and then translating them forward into the
probability density function in ([¢], [m]), including full
accounting for the shape of the measurement uncertainty
distributions and covariances in each of the filters. We consider
this beyond the scope of the present work.

Instead, we have performed a simpler quantitative estimate of
the degree of cross-contamination in (¢], [m]) space. We assume
that the four-component GMM is indeed a reasonable
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Figure 37. Simple Monte Carlo test for cross-contamination of the “metal-rich” and “metal-poor” samples in ([¢], [m]) space. Objects are simulated from the best-fit
four-component GMM in ([¢], [m]) space (whose parameters are given in Table 5), perturbed by measurement uncertainty, and re-characterized using another four-
component GMM and classified by membership probability (W > 0.8) in the same way as the observed data (Section 3.5). The model component assigned to each
object in the characterization is then compared to the component from which the object was drawn. Each panel shows the distribution of trials (out of 5000 total) in
which a given percentage of objects were classified with the indicated mixture component. The left column shows the distribution of origin components for objects
classified as “metal-poor” (top left, blue); the right column shows the origin components for objects classified as “metal-rich” (top right, red). In each column the top
panel shows the distributions of objects classified correctly, while the others show the distributions of objects classified with a different (indicated) component. Only a
handful of objects from the “Background-1” component (k = 2 in Table 5) are misidentified with either the “metal-rich” or the “metal-poor” sample in any of the

trials. See Appendix G.

characterization of the observed distribution of (¢], [m]) values,
and also that the measurement uncertainties in this space can be
described as 2D Gaussians for each object. Samples in (], [m])
are simulated by drawing from the best-fit four-component GMM
and perturbing each object by an uncertainty covariance matrix
(Equation (4)) drawn randomly without replacement from the
observed population. Then a four-component GMM is fit to each
sample, and objects are classified to belong to a model
component using the Wj; > 0.8 threshold that was used on the
observed data set (an object cannot satisfy this condition for more
than one model component by construction). Finally, the model
component classification for each object is compared to the
model component from which it was originally drawn, to
measure the contamination for each component (i.e., the fraction
of objects classified with component K but drawn from k = K).

Figure 37 shows the results of 5000 simulation sets.
Generally, the “metal-poor” component is relatively unconta-
minated by any other population; the total contamination from
these simulations is <1% in all the trials, with the strongest
contamination contributed by the “metal-rich” component (at
~0.1%-0.8%). The “metal-rich” component is more strongly
contaminated. Roughly 5% of this sample is contaminated by
the “metal-poor” component, which is the dominant contami-
nant (the two background components together providing less
than 0.5% in all trials).

These ranges almost certainly underestimate the true
contamination between samples in ([t], [m]). The observed
(], [m]) distribution tends to be less centrally peaked than the

39

model samples (Figure 20), suggesting that the model likely
generates samples whose classification by [#], [m] is artificially
less vulnerable to contamination than in reality. Furthermore,
even if the distribution in flux ratio due to measurement
uncertainty is Gaussian for a given filter, for uncertainties
o (AF/Fy) 2 0.1 the apparent magnitude uncertainty distribu-
tion will deviate substantially from a Gaussian.

Full exploration of these effects is deferred to future work.
For the present, our limited simulation suggests that the two
samples are contaminated in ([¢], [m]) at the <5% level, using
the W, > 0.8 threshold for classification.

Appendix H
Cross-comparison between Catalog Versions

While this work was at an advanced stage, a second version
of the BTS catalog (hereafter “BTSv2”) was released to the
HST archive, based on a re-analysis of the first-epoch BTS data
using improved measurement methods.*” The comparison of
BTSv2 to the first catalog version (hereafter “BTSv1”’) helps
prepare the ground for the ongoing investigations discussed in
Section 6, and so we present the comparison here.

Appendix H.1 compares the apparent magnitudes of the two
catalogs, while Appendix H.2 compares the SWEEPS proper
motions with the BTSv2 proper motions. In Appendix H.3 the
two catalogs are compared against the absolute reference frame

39 See https:/ /archive.stsci.edu/prepds/wic3bulge/. Measurement details are
available in the README at the same location.
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Figure 38. Apparent magnitude comparison between the BTS v1 and v2 photometric catalogs for cross-matched objects within our sample of interest (see Figure 2).
Each pair of panels presents the difference in apparent magnitude (in the Vegamag system), in the sense (v2-v1), showing the run against SWEEPS apparent
magnitude (scatterplots) and the marginal distributions (histograms). Small green symbols and green solid lines represent objects whose flux and position were
measured independently in BTSv2, while larger gray symbols and the gray dashed lines represent objects whose flux was measured at a fixed position. In the
scatterplots, median trends are shown with a solid line. The inset annotations give the median and standard deviation of the magnitude differences. The left-hand set of
panels represents the comparison for WFC3/UVIS, while the right-hand set represents WFC3/IR. For a discussion, see Appendix H.1.

1.5 -10 10
-0.27 Longitude Latitude
1.0 p— p—
. :? -5 > :7 5
- 05 n n
< - © ©
%] = =
= 0.0 i 0 . 0
. -0.12 : N ~
1. (s8] (48]
1.009x -0.266 0.996x -0.120
-15 10 -10
15 10 05 00 -05-1.0-15 10 5 0 -5 -1 -1 -5 0 5 10
Ay (mas/yr) SWEEPS g, (mas/yr) SWEEPS p, (mas/yr)

Figure 39. Comparison of the BTSv2 and SWEEPS proper motions, for objects in our sample of interest (Figure 2). The left panel shows the proper-motion
differences (in the sense BTSv2-SWEEPS), with the mean proper-motion offset between the two catalogs indicated by the cross-hair and annotation; the rms scatter in
(Apu, Apg) is (0.28, 0.29) mas yr~'. The middle and right panels plot the proper motions against each other and present the best-fit straight-line models, in Galactic

longitude (middle) and latitude (right). See the discussion in Appendix H.2.

provided by the first Gaia data release (which contains
positions but not proper motions for these objects). Finally,
in Appendix H.4 we present a preliminary re-determination
of the proper-motion rotation curves using BTSv2 data
exclusively.

H.1. Photometry Comparision between BTSv2 and BTSvi

The BTSvl photometric catalog was produced using
daophotII on summed images in each filter before
combining into the final catalog (Section 2.2 and references
therein), while the BTSv2 catalog uses ‘“effective PSF”
methods (e.g., Anderson & King 2006), the details of which
vary depending on the brightness regime of the object used.
Objects in the brightness range of our proper-motion sample
(Figure 2) were measured using the kstwo code by J.
Anderson, which fits position and flux for each star across all
exposures simultaneously (see Bellini et al. 2017, for details).
For sufficiently bright and isolated objects, the source position
and flux were fit independently, while for fainter and/or less
isolated stars the flux was measured using forced photometry
(with the star position fixed). Because both the source
brightness and degree of isolation depend on the filter and
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camera used, a given star might be measured using forced
photometry in some filters but not others.

Figure 38 presents the comparison of apparent magnitude
between BTSv2 and BTSvl, over the apparent magnitude
range of interest to the present work (stars were cross-matched
between the two catalogs using their equatorial coordinates).
The random component of the apparent magnitude difference is
<0.06 mag in all filters for most objects (compare with the
apparent magnitude selection criteria in Table 3). Systematic
offsets between the data sets are less than 0.02 mag.

H.2. Proper-motion Comparison between BTSv2 and SWEEPS

Figure 39 presents the star-by-star proper-motion compar-
ison between the BTSv2 and SWEEPS catalog for objects
in our apparent magnitude range of interest. Any difference
in scale between the proper-motion determinations is below
1%. A small offset Apg, ~ (0.3, 0.1) between the two
catalogs is apparent, as expected if the proper-motion zero-
point of the two catalogs depends ultimately on the differing
depth of the two surveys. The proper-motion differences
show rms scatter ~0.3 masyr '. Assuming that the full
SWEEPS proper motions carry uncertainty eswggps < 0.12
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Figure 40. Checking the astrometric reference frame of the SWEEPS and BTSv2 catalogs by comparing bright-star positions to the first Gaia Data Release (Gaia
Collaboration et al. 2016a, 2016b). Panels show positional offsets between Gaia DR1 and the SWEEPS (left panel) and BTSv2 (right panel) catalogs. Vectors show
the median positional offsets of image regions with at least 10 stars matched with Gaia DR1 (the shading indicates the number of cross-matched stars per region).
Median offsets in arcseconds are indicated in the axis labels. While substantial residual structure is present in both sets of offsets, no frame rotation is detected at the

<0°05 level, for either catalog. See the discussion in Appendix H.3.

mas yr~' (Appendix A), the BTSv2 proper motions for this
field would contribute approximately egrs ~ 0.27 mas yr .
No trend in the proper-motion differences was found against

apparent magnitude, proper motion, or position.

H.3. Astrometric Reference-frame Comparison with Gaia DRI

To check the orientation of the astrometric frames of the
catalogs, positions in the SWEEPS and BTSv2 catalogs were
matched to their entries in the First Gaia Data Release, which
should provide absolute positions on the International Celestial
Reference System (ICRS) in the 2015.0 epoch, albeit possibly
with residual distortions in these crowded regions (Gaia
Collaboration et al. 2016a, 2016b). Objects in the Gaia
apparent magnitude range 18.0 < G < 19.5 were selected for
cross-matching, as a trade-off between quality of Gaia
measurement and the desire to avoid highly saturated objects
in the SWEEPS and BTS catalogs; this leaves a few thousand
objects with which to probe positional differences. To
minimize random scatter in the comparison, positions from
the SWEEPS and BTSv2 catalogs were advanced to their
positions in the 2015.0 epoch using the measured proper
motions in each catalog; the Gaia DRI catalog does not
contain proper motions for these objects.

Figure 40 maps the astrometric offsets from the Gaia
DRI1 frame for both the SWEEPS and BTS catalogs. While the
two catalogs are slightly offset with respect to the Gaia
DRI1 frame (by <0”3 in each coordinate), no rotational flow
pattern is detected that would suggest misalignment of either of
the reference frames. The scale of the positional residuals is
surprisingly large, with flow pattern common to both catalog
comparisons that reaches up to ~0”15 in some regions. The
largest residual structure is found at a similar location in the
comparisons to both the SWEEPS and BTSv2 catalogs, despite
the two HST catalogs being taken at different camera
orientations and with different field centers, so we suspect that
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the flow pattern is dominated by distortion in the Gaia
DRI1 frame in these crowded regions. (Comparison of Subaru
measurements with Gaia DRI positions near the core of the
Sextans dwarf galaxy also shows a flow pattern of offsets on a
scale of ~50” with a gap in Gaia DRI coverage; C. Dinescu
2018, private communication.) We expect that this flow pattern
will vanish in comparisons to future Gaia data releases that
have included the more sophisticated treatment for crowding
outlined in Pancino et al. (2017). Based on the scale of the flow
patterns near the corners of the difference maps (<071), we
conclude that the astrometric reference frames of the
SWEEPS and BTSv2 catalogs are aligned with the ICRS
frame to better than ~0°05.

H.4. Preliminary Results Using BTSv2 Only

Finally, to investigate whether our results qualitatively
change when moving from BTSvl to BTSv2, we have
performed a preliminary re-analysis using the BTSv2 measure-
ments only, following the procedures of Section 3 as far as the
production of the proper-motion rotation curves.

Not all the selection steps are common to both catalogs; for
example, BTSv2 does not contain F6O6W measurements (as
were used when we melded the SWEEPS and BTSv2 catalogs
in Section 3), which thus alters the initial selection of objects,
and BTSv2 contains additional information that can be used to
select objects by measurement quality (details can be found in
the BTSv2README file). Additionally, BTSv2 proper-
motion uncertainties have not yet been characterized as fully
as the ACS/WFC uncertainties in the SWEEPS field (e.g.,
Calamida et al. 2015). Finally, the proper-motion zero-points of
the two catalogs differ, and the appropriate value of Dy to use
for BTSv2 has not yet been established.

Figure 41 shows the results. While some of the fine structure
in the rotation curves appears to differ when compared to the
BTSvl-based analysis, the behavior we observe is not
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Figure 41. Preliminary re-analysis using BTSv2 data only, for both the [¢], [m] and the proper motions. Left panel: ((¢], [m]) distribution from the revised photometry
(compare with Figure 3). Right panel: proper-motion rotation curve for “metal-rich” and “metal-poor” samples using BTSv2 proper motions (compare with Figure 8).
See Appendix H.4 for discussion.

substantially changed by use of the BTSv2 catalog; the “metal- development of the chemically dissected bulge rotation curves
rich” and “metal-poor” rotation curves still differ, with the will be reported in a future communication after the work has
“metal-rich” curve showing a steeper gradient. Full been extended to all four BTS fields.
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Table 12
Observed Rotation Trend for the “Metal-rich” Sample, with Uncertainty Ranges Given as 1o Limits Based on 1000 Parametric Bootstrap Trials

I Bin Edges N <p,1> <l’l‘h> a“ hH (/5”, a/b an Thp Clb
(mag) (mag) (mas yr") (mas yr~ D) (mas yr~ D) (mas yr’l) (deg) (mas> yr’z) (mas” yr’z) (mas? yr’z)
—1.30 —1.51, —1.18 20 2.96 + 0.591 —0.01 £ 0.287 2.6 + 042 1.3+£021 0.8 + 10.33 2.00 £ 0.112 6.88 £ 2.203 1.71 £ 0.535 —0.07 £ 0.760
—0.67 —1.17, —0.48 198 1.58 + 0.193 —0.18 £ 0.160 2.8 +£0.14 22 +0.11 21.3 + 7.69 1.30 + 0.053 7.52 £ 0.758 5.10 £ 0.512 —1.11 £ 0.434
—0.37 —0.48, —0.31 199 1.14 + 0.188 —0.06 £ 0.161 2.7 +0.14 22 +0.11 255 + 12.34 1.20 + 0.058 6.81 £ 0.695 5.45 £ 0.543 —0.84 £ 0.445
—0.26 —0.31, —0.22 199 1.13 + 0.195 0.11 + 0.206 3.0+ 0.15 25 +0.12 52.7 £ 15.78 1.19 + 0.056 8.03 + 0.752 7.32 £ 0.813 —1.28 £ 0.539
—0.18 —0.22, —-0.15 196 1.17 £ 0.182 —0.15 £ 0.197 2.8 +£0.14 24 +0.12 59.1 + 25.80 1.16 £ 0.055 7.45 £ 0.664 6.50 £ 0.758 —0.88 £ 0.480
—0.12 —0.15, —0.10 199 1.14 + 0.203 —0.08 £ 0.182 3.0+ 0.14 24 +0.12 30.5 +9.48 1.25 £ 0.055 8.34 + 0.785 6.73 £ 0.653 —1.45 £ 0.544
—0.07 —0.10, —0.04 199 0.80 £ 0.228 0.21 + 0.205 32 +0.16 2.7 +£0.13 34.7 + 13.36 1.18 + 0.055 9.48 £ 0.977 8.43 + 0.837 —1.40 £ 0.627
—0.01 —0.04, 0.02 199 —0.00 £ 0.222 0.26 + 0.189 33 +0.16 25 +0.12 32.3 + 848 1.29 + 0.053 9.43 £ 0.977 7.64 £ 0.754 —1.90 £ 0.611
0.04 0.02, 0.06 197 0.00 £ 0.208 0.20 + 0.193 3.1+0.16 2.6 +0.13 36.4 + 1591 1.18 £ 0.057 8.37 + 0.879 7.59 £ 0.773 —1.27 £ 0.572
0.09 0.06, 0.12 199 —0.68 £ 0.197 0.46 + 0.203 3.1+0.15 25+0.12 41.0 £+ 8.84 1.27 £ 0.054 8.12 + 0.816 7.61 £ 0.766 —1.84 £ 0.568
0.15 0.12, 0.18 198 —0.93 £ 0.177 0.42 £ 0.190 29 +0.14 22 +0.11 50.1 &+ 8.03 1.30 £ 0.051 6.87 £ 0.627 6.26 + 0.671 —1.67 £ 0.466
0.22 0.18, 0.26 198 —1.03 £ 0.164 0.29 + 0.165 2.4 +0.10 2.3 +0.10 63.3 + 54.11 1.03 £ 0.045 547 £ 0.515 5.28 £ 0.550 —0.12 £ 0.373
0.33 0.26, 0.41 198 —1.10 £ 0.152 0.00 + 0.138 22 +0.11 1.9 + 0.09 31.8 +21.84 1.13 £ 0.053 4.50 £ 0.470 4.04 £0.413 —0.46 £ 0.291
0.53 0.41, 1.25 134 —0.98 £ 0.140 0.11 + 0.141 1.6 + 0.08 1.6 + 0.08 —65.1 £ 55.84 1.03 + 0.049 2.63 £ 0.299 2.54 £0.322 0.05 £ 0.214

Note. (1), (1) represent the mean proper motions in each bin, with a,,, b,, the major and minor axes of the velocity ellipse, respectively. ¢, gives the position angle (in I, b) of the proper-motion ellipse and a/b its
major-axis:minor-axis ratio. Finally, the quantities 3, 0%, and Cy, represent the three unique components of the proper-motion dispersion. See the discussion in Section 4.1.
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Table 13
Same as Table 12, but with Photometric Parallaxes and Proper Motions Converted into Distances and Velocities Using a Reference Distance of 7.76 kpc

d dlo, dhi N <Vl> <Vb> ay bv (/)lb a/b lel,v U?}b,v leb,v
(kpc) (kpc) (kms™h (kms™ " (kms™h (kms™h (deg) (km*s™?) (km*s~?) (km*s™?)
4.26 3.87,4.51 20 59.73 + 11.939 —0.28 £ 5.786 53 +£84 26 £4.2 0.8 + 10.33 2.00 + 0.112 138.9 + 44.48 34.6 + 10.80 —1.5 £ 15.34
5.69 4.53, 6.21 198 42.65 £ 5.198 —4.94 £ 4.326 76 £ 3.8 58 £29 21.3 + 7.69 1.30 £ 0.053 202.6 + 20.42 137.6 £ 13.81 —29.8 £ 11.70
6.55 6.22, 6.72 199 35.56 + 5.850 —1.84 £ 5.003 83 +42 70 £ 3.5 25.5 + 12.34 1.20 + 0.058 211.6 £ 21.59 169.2 + 16.88 —26.1 £ 13.82
6.90 6.72, 7.02 199 36.87 + 6.390 3.48 + 6.723 98 + 4.9 82 + 4.0 52.7 + 15.78 1.19 £ 0.056 262.6 + 24.59 239.4 + 26.59 —42.0 £ 17.62
7.14 7.02,7.23 196 39.71 + 6.163 —5.06 £ 6.656 96 + 4.6 83 + 4.0 59.1 + 25.80 1.16 + 0.055 252.0 +22.47 219.9 + 25.64 —29.9 + 16.25
7.33 7.23,7.42 199 39.69 + 7.058 —2.84 £ 6.330 105 £ 5.0 84 + 4.1 30.5 +9.48 1.25 £ 0.055 289.8 £+ 27.29 234.1 £ 22.70 —50.4 £ 18.90
7.51 7.42,7.62 199 28.35 + 8.121 7.48 + 7.290 115 £59 97 £45 34.7 + 13.36 1.18 + 0.055 337.3 £ 34.78 299.9 + 29.78 —49.8 £ 2231
7.71 7.62,7.82 199 —0.17 £ 8.097 9.63 + 6.920 119 £+ 6.0 93 £ 45 32.3 + 8.48 1.29 + 0.053 344.6 + 35.72 279.1 £+ 27.54 —69.3 £ 22.32
7.90 7.82,7.99 197 0.07 £ 7.775 7.36 + 7.235 114 £59 97 £4.7 36.4 + 1591 1.18 + 0.057 313.5 £ 3291 284.1 + 28.95 —47.4 £ 21.43
8.10 7.99, 8.20 199 —26.04 £ 7.561 17.79 £ 7.789 120 £ 59 94 + 4.7 41.0 + 8.84 1.27 £ 0.054 311.7 + 31.33 292.0 £+ 29.41 —70.5 £ 21.80
8.30 8.20, 8.44 198 —36.52 £ 6.951 16.47 £ 7.486 113 £55 87 + 4.2 50.1 + 8.03 1.30 + 0.051 270.3 + 24.67 246.5 + 26.42 —65.8 £ 18.32
8.58 8.44, 8.75 198 —41.91 £ 6.672 11.88 £ 6.714 96 + 4.1 93 +4.0 63.3 + 54.11 1.03 + 0.045 222.4 + 20.95 2149 + 22.37 —5.0 £ 15.17
9.02 8.75, 9.35 198 —47.09 £ 6.515 0.04 +5.912 93 £45 83 + 3.9 31.8 +21.84 1.13 + 0.053 192.2 £ 20.10 172.7 £ 17.64 —19.6 £ 12.46
9.89 9.36, 13.82 134 —45.84 £ 6.561 5.37 + 6.624 76 £ 3.8 74 £ 3.7 —65.1 £ 55.84 1.03 + 0.049 123.3 £+ 14.03 119.1 £ 15.10 2.5 + 10.05

Note. See the discussion in Section 4.1.

1 AN 8107 (dd¢g) 94:868 “TVNINO[ TVOISAHIOWLSY TH]J,

‘I8 19 uosyIe))



SP

Table 14
Observed Rotation Trend for the “Metal-poor” Sample, with Uncertainty Ranges Given as 1o Limits Based on 1000 Parametric Bootstrap Trials

i Bin Edges N N‘b) a, b/' (Z)]b ll/b ay Thp C[],
(mag) (mag) (mas yr’l) (mas yr— D) (mas yr") (mas yr’l) (deg) (mas? yr’z) (mas? yr’z) (mas? yr’z)
—1.65 —1.83, —1.42 20 2.96 + 0.544 0.69 + 0.641 3.2+ 049 2.0 +0.30 —55.2 £20.77 1.61 + 0.125 8.41 + 1.895 6.15 + 2.686 3.03 + 1.676
—1.01 —1.39, —0.79 199 0.57 £ 0.238 —0.04 £ 0.210 33 £0.16 2.8 £0.13 229 +12.17 1.20 £ 0.054 10.52 £ 1.039 8.15 + 0.834 —1.22 £ 0.649
—0.65 —0.78, —0.56 198 0.61 +0.214 —0.34 £ 0.211 34 +0.17 2.6 +£0.13 40.6 £ 9.08 1.29 + 0.053 9.47 £+ 0.984 8.76 + 0.868 —2.27 £ 0.659
—0.47 —0.56, —0.39 198 0.38 £ 0.223 —0.05 £ 0.223 35 +0.17 25 +0.12 43.8 £6.82 1.37 £ 0.052 9.40 £ 0.934 9.16 + 0.892 —2.81 £ 0.686
—0.33 —0.39, —0.29 199 0.30 + 0.224 —0.26 £ 0.208 32+0.15 2.8 +0.13 14.3 £ 18.70 1.14 + 0.053 10.32 £ 1.012 8.16 + 0.809 —0.59 £ 0.645
—0.24 —0.29, —0.20 198 0.14 + 0.223 0.42 + 0.216 32 +0.15 3.0£0.13 29.9 £ 33.12 1.08 £ 0.049 9.75 £ 1.014 9.05 + 0.904 —0.59 £ 0.632
—0.16 —0.20, —0.13 198 0.18 + 0.223 0.14 + 0.217 34 £0.16 29 +0.14 50.4 + 24.56 1.15 + 0.054 10.29 + 0.980 9.75 + 1.063 —1.40 £ 0.721
—0.09 —0.13, —0.04 196 —0.01 £ 0.208 0.10 + 0.212 31 +0.15 2.8 £0.13 50.3 £ 26.77 1.13 £ 0.054 8.95 + 0.842 8.55 + 0.878 —1.06 £ 0.622
—0.01 —0.04, 0.02 199 —0.15 £ 0.215 0.48 + 0.188 3.0+ 0.14 2.6 £0.13 13.9 £ 20.05 1.14 £ 0.055 8.84 + 0.873 6.97 + 0.709 —0.49 £ 0.552
0.06 0.03, 0.09 200 —0.35 £ 0.210 0.08 = 0.195 32 +0.15 2.8 £0.14 229 +17.39 1.15 £ 0.056 9.75 £ 0.962 8.03 + 0.784 —0.89 £ 0.629
0.13 0.09, 0.17 197 —0.38 £ 0.198 0.02 + 0.194 2.8 +0.12 2.8 £0.11 59.5 + 53.65 1.02 + 0.044 7.84 £+ 0.746 7.68 + 0.771 —0.15 £ 0.551
0.21 0.17, 0.26 197 —0.63 £ 0.231 0.28 + 0.196 32 £0.16 2.7 +£0.13 —10.7 £ 15.33 1.17 £ 0.055 10.20 £ 1.026 7.60 £ 0.765 0.51 £ 0.639
0.32 0.26, 0.37 199 —0.58 £ 0.161 0.28 + 0.190 2.7+ 0.13 2.1 £0.10 63.7 £ 12.58 1.28 + 0.053 6.72 £+ 0.487 5.01 + 0.690 —1.12 £ 0.416
0.44 0.37, 0.54 197 —0.65 £ 0.188 0.21 £+ 0.173 2.5+ 0.11 2.5+ 0.10 11.2 £ 43.30 1.03 £ 0.043 6.46 £ 0.668 6.08 + 0.592 —0.08 £ 0.466
0.69 0.54, 1.08 191 —0.38 £ 0.129 0.12 + 0.122 1.8 £ 0.09 1.6 £ 0.08 18.0 £ 22.81 1.12 £ 0.055 3.24 + 0.324 2.69 + 0.272 —0.20 £ 0.210

Note. See the discussion in Section 4.1.
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Table 15
Same as Table 14, but with Photometric Parallaxes and Proper Motions Converted into Distances and Velocities Using a Reference Distance of 7.76 kpc

d dyo, dpi N <Vl> <Vh> ay b, P d/b 012[,v U%b,y 0'[217.‘,
(kpc) (kpc) (kms™h (kms™" (kms™h (kms™h (deg) (km?s7?) (km?s™?) (km*s™?)
3.64 3.34,4.03 20 50.99 £ 9.375 11.92 £ 11.049 56 + 8.5 35+52 —55.2 £20.77 1.61 £ 0.125 144.9 + 32.67 106.0 £ 46.30 52.2 £+ 28.89
4.88 4.10, 5.40 199 13.11 + 5.512 —0.96 & 4.846 77 £ 3.7 64 £3.1 229 £+ 12.17 1.20 &+ 0.054 243.1 £ 24.01 188.4 £+ 19.29 —28.2 £+ 15.00
5.74 5.41,5.99 198 16.61 £ 5.827 —9.19 £ 5.748 92 + 4.6 71 + 3.6 40.6 £+ 9.08 1.29 £ 0.053 257.7 £ 26.78 238.4 + 23.61 —61.9 £ 17.93
6.24 6.00, 6.48 198 11.35 £+ 6.605 —1.46 £+ 6.591 103 £5.1 75 £3.7 43.8 + 6.82 1.37 + 0.052 278.1 £+ 27.64 271.1 £+ 26.38 —83.0 £+ 20.30
6.66 6.48, 6.80 199 9.57 &+ 7.064 —8.07 & 6.555 102 £ 4.8 89 +£42 14.3 £+ 18.70 1.14 £+ 0.053 325.7 £31.92 257.5 £ 25.52 —18.6 +20.34
6.94 6.80, 7.07 198 4.68 + 7.332 13.71 £+ 7.106 104 £ 4.8 97 £43 29.9 £ 33.12 1.08 £ 0.049 320.4 £ 33.33 297.7 £+ 29.70 —19.5 +20.77
7.19 7.07,7.32 198 6.14 £ 7.621 4.89 £+ 7.400 115+ 5.6 100 + 4.8 50.4 £ 24.56 1.15 £ 0.054 350.8 + 33.43 332.6 £ 36.26 —47.9 £ 24.59
7.45 7.32, 7.60 196 —0.19 £ 7.344 3.42 £+ 7.488 111 £52 98 £45 50.3 £+ 26.77 1.13 + 0.054 315.8 £29.73 301.7 £+ 31.01 —37.6 £ 21.94
7.72 7.61, 7.85 199 —5.52 + 7.878 17.53 &+ 6.867 110 £52 96 £+ 4.6 13.9 & 20.05 1.14 £+ 0.055 323.5 £31.94 255.3 £ 25.95 —18.0 +20.20
7.99 7.85, 8.10 200 —13.12 £ 7.942 291 £ 17377 120 £ 5.7 105 £ 5.1 229 +17.39 1.15 + 0.056 369.0 £+ 36.42 303.8 £ 29.67 —33.6 +23.83
8.23 8.10, 8.38 197 —14.86 £ 7.709 0.73 £ 7.574 110 + 4.6 107 + 4.4 59.5 £ 53.65 1.02 £ 0.044 305.9 £ 29.12 299.5 £ 30.08 —5.8 +21.49
8.54 8.38, 8.74 197 —25.42 £ 9.355 11.16 + 7.915 130 £ 6.4 111 +£54 —10.7 £+ 15.33 1.17 + 0.055 412.6 + 41.53 307.5 £+ 30.96 20.6 £ 25.85
8.98 8.74, 9.20 199 —24.84 + 6.840 11.82 £ 8.070 115 +£5.7 90 + 4.4 63.7 £ 12.58 1.28 £ 0.053 286.1 £ 20.71 213.4 £29.36 —47.7 £ 17.69
9.49 9.20, 9.96 197 —29.17 £ 8.464 9.30 £ 7.800 115+ 49 111 £ 4.7 11.2 4 43.30 1.03 £+ 0.043 290.8 £ 30.04 273.7 £ 26.66 —3.5 +20.99
10.67 9.96, 12.79 191 —19.02 £ 6.542 6.14 £+ 6.176 92 +£43 82 +£39 18.0 & 22.81 1.12 £+ 0.055 164.1 &+ 16.38 136.3 £+ 13.76 —10.1 £ 10.64

Note. See the discussion in Section 4.1.
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Table 16
Bin Statistics for the Rotation Curves of the “Metal-rich” Sample

ud Th — o d dpi — dio N 4 P N S pQp)

(mag) (mag) (kpe) (kpe) (pc?) (pe™) (pe™)

-1.30 0.330 4.26 0.636 20 1316.1 0.015 1£08 0.05 £ 0.040 0.001 + 0.0006
—0.67 0.687 5.69 1.684 198 5556.9 0.036 21 £42 0.11 £ 0.021 0.004 £ 0.0007
—0.37 0.170 6.55 0.507 199 2413.5 0.082 23 +£ 4.6 0.12 + 0.023 0.010 £ 0.0019
—0.26 0.092 6.90 0.292 199 1558.6 0.128 27 £ 4.8 0.14 £ 0.024 0.017 £ 0.0031
—0.18 0.065 7.14 0.213 196 1227.1 0.160 21 £43 0.11 £ 0.022 0.017 £ 0.0035
—0.12 0.055 7.33 0.186 199 1138.2 0.175 31 +£4.7 0.16 £+ 0.023 0.027 £ 0.0041
—0.07 0.057 7.51 0.198 199 1290.6 0.154 35+£55 0.18 £ 0.028 0.027 + 0.0042
—0.01 0.058 7.71 0.206 199 1387.8 0.143 53 +6.3 0.27 £ 0.032 0.038 £ 0.0045
0.04 0.046 7.90 0.168 197 1202.2 0.164 47 £ 6.0 0.24 £+ 0.030 0.039 + 0.0050
0.09 0.056 8.10 0.209 199 1556.8 0.128 72 £ 6.5 0.36 £+ 0.033 0.046 £ 0.0042
0.15 0.061 8.30 0.235 198 1843.1 0.107 65 + 6.7 0.33 £+ 0.034 0.035 + 0.0036
0.22 0.079 8.58 0.311 198 2626.0 0.075 71 £ 6.6 0.36 £ 0.034 0.027 £ 0.0025
0.33 0.144 9.02 0.598 198 5651.9 0.035 76 + 6.7 0.38 £ 0.034 0.013 £ 0.0012
0.53 0.846 9.89 4.457 134 86926.5 0.002 36 £52 0.27 £+ 0.038 0.000 £ 0.0001

Note. Wedge volumes V and densities p assume that the reference sample lies at distance 7.76 kpc. N(y;) and p(yy) denote the counts and number densities,
respectively, of objects that would pass a kinematic cut of z; < —2.0 mas yr™'. The binning scheme is the same as in Table 12. The uncertainties quoted refer to 1o
ranges from 1000 parameteric bootstrap trials. See Section 5.9.

Table 17
Same as Table 16, but for the “Metal-poor” Sample

m Thi = o d dni — dio N 4 p N(pu) F(u,) ()

(mag) (mag) (kpe) (kpe) (pc?) (e ) (pc™)

—1.65 0.410 3.64 0.693 20 1196.6 0.017 0+07 0.00 + 0.034 0.000 £ 0.0006
—1.01 0.600 4.88 1.306 199 3365.2 0.059 37+£59 0.19 + 0.030 0.011 £ 0.0018
—0.65 0.223 5.74 0.585 198 2166.4 0.091 43 £ 5.6 0.22 £ 0.028 0.020 £ 0.0026
—0.47 0.168 6.24 0.484 198 2146.4 0.092 46 £ 6.0 0.23 + 0.030 0.021 + 0.0028
—0.33 0.104 6.66 0.318 199 1594.7 0.125 54 + 6.0 0.27 £ 0.030 0.034 £ 0.0037
—0.24 0.085 6.94 0.272 198 1482.6 0.134 52+63 0.26 + 0.032 0.035 £ 0.0043
—0.16 0.073 7.19 0.242 198 1422.1 0.139 49 £ 6.1 0.25 £ 0.031 0.034 £ 0.0043
—0.09 0.083 7.45 0.287 196 1823.4 0.107 45 £ 6.0 0.23 £ 0.031 0.025 £ 0.0033
—0.01 0.068 7.72 0.244 199 1654.0 0.120 59 + 6.6 0.30 £ 0.033 0.036 £ 0.0040
0.06 0.067 7.99 0.245 200 1768.9 0.113 63 +£63 0.32 + 0.031 0.036 £ 0.0036
0.13 0.075 8.23 0.283 197 2189.7 0.090 56 + 6.4 0.28 £ 0.032 0.026 £ 0.0029
0.21 0.090 8.54 0.356 197 2980.7 0.066 72 £ 68 0.37 + 0.034 0.024 + 0.0023
0.32 0.111 8.98 0.458 199 4176.0 0.048 57 £ 6.2 0.29 £ 0.031 0.014 £ 0.0015
0.44 0.172 9.49 0.758 197 7880.7 0.025 59 + 6.6 0.30 £ 0.033 0.007 £ 0.0008
0.69 0.543 10.67 2.829 191 42078.2 0.005 29+£5.1 0.15 + 0.027 0.001 + 0.0001

Note. See Section 5.9.
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Table 18
Observed Rotation Trend for the “Metal-rich” Sample, Using a Constant-width Binning Scheme and with Uncertainty Ranges Given as 1o Limits Based on 1000 Parametric Bootstrap Trials

i Bin Edges N () (g ay b, P a/b o T Cuw
(mag) (mag) (mas yrfl) (mas yr b (mas yr’l) (mas yr’l) (deg) (mas2 yr’z) (mals2 yr’z) (mals2 yr’z)
—0.81 —0.86, —0.78 25 1.51 + 0.572 —0.91 £ 0.430 2.8 £0.36 2.1 +0.28 13.0 + 27.17 1.33 £0.120 7.77 £ 2.154 4.68 £ 1.313 —0.76 £ 1.187
-0.73 —0.77, —0.70 31 1.04 + 0.613 —0.52 £ 0.568 44 +0.55 1.9 £ 0.24 412 £5.75 2.34 £+ 0.082 12.46 + 3.047 10.36 + 2.611 —7.82 £ 2.457
—0.65 —0.68, —0.61 32 1.75 £ 0.478 0.40 £ 0.320 2.6 +£0.32 1.8 £0.21 —4.8 £ 1591 1.50 £ 0.112 6.88 + 1.733 3.10 £ 0.761 0.32 £0.792
—0.56 —0.60, —0.51 51 1.57 £ 0413 —0.22 £ 0.404 294025 2.8 +0.23 33.9 + 48.98 1.03 £ 0.079 8.09 + 1.606 7.91 £ 1.504 —-0.22 £ 1.115
—0.46 —0.51, —0.43 69 0.91 £ 0.320 —0.22 £ 0.295 2.8 £0.22 24 +0.18 23.6 + 27.06 1.17 £ 0.078 7.32 £ 1.266 5.90 £ 0.986 —0.77 £ 0.795
—0.36 —0.42, —0.34 107 1.52 + 0.253 0.18 £ 0.216 2.7+0.18 23 +0.15 21.2 +20.41 1.19 £ 0.072 7.05 £+ 0.965 5.48 £ 0.717 —0.72 £ 0.611
—0.29 —0.34, —0.25 155 1.13 £ 0.213 —0.20 £ 0.222 29 +0.16 24 +0.14 46.0 £ 19.28 1.20 £ 0.062 7.19 £ 0.795 7.10 £ 0.824 —1.27 £ 0.582
—0.20 —0.25, —0.16 267 1.15 + 0.181 0.01 £0.184 32 4+0.12 2.8 +0.12 60.7 + 37.07 1.11 + 0.048 9.54 + 0.722 8.55 + 0.815 —0.81 £ 0.549
—0.12 —0.16, —0.08 306 0.85 £ 0.170 —0.03 £ 0.161 3.1+0.13 2.6 £0.11 22.7 +10.42 1.20 £ 0.048 9.22 + 0.768 7.18 £ 0.588 —1.03 £0.482
—0.03 —0.07, 0.01 293 0.43 £ 0.171 0.17 £ 0.178 3.4 +0.14 2.7+ 0.11 43.1 £ 8.16 1.24 £ 0.046 9.58 + 0.798 9.31 £ 0.743 —2.01 £0.579
0.05 0.01, 0.10 346 —0.10 £ 0.155 0.34 £ 0.156 32 +0.12 2.7 +£0.10 432 £ 8.11 1.21 £ 0.043 8.95 + 0.680 8.74 £+ 0.668 —1.69 £ 0.481
0.14 0.10, 0.19 289 —0.96 £+ 0.153 0.28 £ 0.166 3.0+ 0.12 2.3 +£0.10 522 +5.67 1.34 + 0.044 7.63 + 0.547 6.61 + 0.641 —1.98 £ 0.433
0.23 0.19, 0.27 210 —0.99 £ 0.162 0.22 £ 0.154 2.4 £+ 0.10 2.3 + 0.09 0.8 + 38.19 1.05 £ 0.045 5.63 + 0.540 5.13 £ 0.479 —0.01 £ 0.382
0.32 0.28, 0.36 128 —0.87 £ 0.212 0.18 £ 0.177 24 4+ 0.15 1.8 £ 0.11 319 £9.71 1.32 + 0.064 522 + 0.648 4.11 £ 0.493 —1.13 £ 0417
0.39 0.36, 0.45 79 —1.09 £ 0.239 —0.13 £ 0.249 23 £0.16 2.0+ 0.14 —62.9 £ 48.55 1.14 £ 0.074 5.06 = 0.665 4.33 £ 0.767 0.50 £ 0.518
0.50 0.45, 0.53 44 —1.13 £ 0.309 0.47 £0.321 224020 2.0+ 0.18 69.2 + 56.46 1.08 £ 0.088 4.65 £ 0.839 4.15 £ 0.990 —0.22 £ 0.670
0.67 0.64, 0.70 20 —1.19 £ 0.521 0.18 £ 0.244 22 4+ 036 1.0 £ 0.16 —10.9 £ 8.31 2.17 £ 0.110 4.81 £ 1.555 1.19 £ 0.362 0.73 £ 0.558

Note. See the discussion in Section 4.1.
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Table 19
Same as Table 18 (i.e., Using a Constant-width Binning Scheme), but with Photometric Parallaxes and Proper Motions Converted into Distances and Velocities Using a Reference Distance of 7.76 kpc

d dio, dhi N (V1) (v) ay b, bu, afb T by Tl

(kpc) (kpc) (kms™ ") (kms™") (kms™ ") (kms™) (deg) (km®s7?) (km” s~ (km” s72)
5.35 5.23,543 25 38.37 £ 14.507 —23.14 £ 10.905 71 £9.0 54+72 13.0 £ 27.17 1.33 £ 0.120 196.9 + 54.59 118.5 £ 33.27 —19.1 £ 30.07
5.55 5.44, 5.63 31 2743 £ 16.119 —13.76 £ 14.947 116 £ 14.5 49 +£ 6.3 412 £ 5.75 2.34 + 0.082 327.6 + 80.14 272.4 + 68.65 —205.7 £+ 64.61
5.76 5.68, 5.86 32 47.82 £ 13.048 10.88 + 8.724 72 + 89 48 £5.8 —4.8 £ 1591 1.50 £ 0.112 187.7 £ 47.30 84.7 £ 20.78 8.7 £21.62
6.01 5.89, 6.12 51 44.67 £ 11.751 —6.37 £ 11.500 82 +72 79 £ 6.5 33.9 + 48.98 1.03 £ 0.079 230.3 + 45.71 225.1 +42.83 —6.4 + 31.75
6.26 6.13, 6.38 69 27.05 £ 9.494 —6.39 £ 8.755 82 £+ 6.5 70 £ 5.4 23.6 £ 27.06 1.17 £ 0.078 217.4 £ 37.61 175.1 £ 29.27 —22.9 £ 23.59
6.56 6.38, 6.64 107 4734 + 7.874 5.50 £ 6.724 84 £ 5.6 71 £ 4.6 21.2 £ 2041 1.19 £ 0.072 219.3 + 30.00 170.3 £ 22.29 —22.4 £ 19.01
6.80 6.64, 6.92 155 36.29 £ 6.861 —6.39 £+ 7.150 93 +£5.0 78 + 4.4 46.0 £+ 19.28 1.20 £ 0.062 231.7 £ 25.62 228.7 £ 26.54 —40.8 £ 18.74
7.06 6.92, 7.20 267 38.54 £ 6.063 0.37 £ 6.159 106 + 4.2 95 £39 60.7 £ 37.07 1.11 £ 0.048 319.3 +24.18 286.1 + 27.29 —27.1 £ 18.37
7.35 7.20, 7.50 306 29.54 £ 5915 —0.89 £+ 5.612 108 + 4.4 91 +3.8 22.7 £ 10.42 1.20 £ 0.048 321.3 £+ 26.77 250.3 £ 20.48 —36.1 £ 16.81
7.64 7.50, 7.80 293 15.71 £ 6.204 6.20 £ 6.456 123 £ 5.2 99 + 3.9 43.1 £ 8.16 1.24 £ 0.046 347.1 £ 28091 337.4 £ 26.92 —72.9 £ 20.97
7.94 7.80, 8.12 346 —3.90 £ 5.835 12.73 £+ 5.859 122 + 4.6 101 + 3.9 432 £ 8.11 1.21 £ 0.043 337.1 £ 25.58 329.1 £ 25.16 —63.7 £ 18.11
8.27 8.13, 8.46 289 —37.52 £+ 6.007 10.89 + 6.490 119 £ 49 88 + 3.8 522 +£5.67 1.34 + 0.044 299.1 + 21.45 259.1 £ 25.15 —77.7 £ 16.96
8.61 8.46, 8.81 210 —40.35 £ 6.605 9.00 £ 6.265 97 +£42 92 +3.7 0.8 + 38.19 1.05 £ 0.045 229.7 £ 22.04 209.3 £ 19.53 —0.3 £+ 15.59
8.98 8.81,9.17 128 —37.20 £ 9.032 7.47 £ 7.539 104 £ 6.3 79 £ 4.8 319 £9.71 1.32 + 0.064 222.3 + 27.60 175.0 £ 21.00 —48.3 £ 17.73
9.28 9.17, 9.54 79 —47.75 £+ 10.531 —5.60 £+ 10.950 101 £ 7.1 89 + 6.3 —62.9 + 48.55 1.14 £ 0.074 222.6 £ 29.28 190.7 £ 33.77 22.1 £22.78
9.71 9.55,9.92 44 —52.53 £+ 14.310 21.90 + 14.861 101 +£9.3 93 + 8.2 69.2 £ 56.46 1.08 £ 0.088 215.5 + 38.88 192.1 £ 45.83 —10.4 £ 31.03
10.57 10.40, 10.72 20 —59.62 £ 26.087 9.01 + 12.234 111 £ 179 51 £ 8.0 —10.9 £ 831 2.17 £ 0.110 241.0 + 77.94 59.6 + 18.14 36.4 + 27.94

Note. See the discussion in Section 4.1.

1 AN 8107 (dd¢g) 94:868 “TVNINO[ TVOISAHIOWLSY TH]J,

‘I8 19 uosyIe))



0s

Table 20
Observed Rotation Trend for the “Metal-poor” Sample, Using a Constant-width Binning Scheme and with Uncertainty Ranges Given as 1o Limits Based on 1000 Parametric Bootstrap Trials

w Bin Edges N ) {11p) A by, P a/b ai T Cu
(mag) (mag) (mas yrfl) (mas yr— 1) (mas yr’l) (mas yrfl) (deg) (Inas2 yr72) (rnas2 yrfz) (mas2 yrfz)
—1.17 —-1.21, -1.13 26 2.08 £ 0.672 —0.02 £ 0.607 3.6 + 0.46 2.9+ 0.37 25.6 + 30.86 1.27 £0.117 12.25 + 3.393 9.15 £ 2.517 —1.93 £2.108
—1.06 —1.12, —1.04 31 —0.42 £ 0.683 —0.27 £ 0.475 3.8 +£043 2.7 +£0.32 —0.2 £ 17.83 141 £0.111 14.19 + 3.301 7.11 £ 1.756 0.02 £ 1.756
—1.00 —1.04, —0.95 34 0.64 £+ 0.537 0.64 £ 0.394 3.3 +£ 040 224025 17.2 + 14.89 1.50 £ 0.106 10.05 £ 2.525 5.21 £ 1.220 —1.66 £ 1.256
—-0.91 —0.95, —0.86 35 0.02 £ 0.443 —0.21 £ 0.536 3.3+ 037 24 +0.28 57.9 + 28.81 1.37 £ 0.110 9.57 £ 1.742 7.32 £2.218 —2.32 £ 1422
—0.81 —0.86,—0.78 47 —0.17 £ 0.432 0.35 £ 0.492 3.4 4+ 031 2.9+ 0.27 86.4 + 68.08 1.17 £ 0.090 11.85 £ 1.786 8.65 + 2.384 —0.20 £ 1.534
—0.73 —-0.77, —0.69 67 0.58 £ 0.387 0.37 £ 0.363 3.8 +0.33 2.3 +0.20 40.0 £ 7.64 1.61 £ 0.077 10.53 £ 1.822 9.02 + 1.601 —4.25 £ 1.336
—0.64 —0.69, —0.60 75 0.36 £+ 0.367 —0.43 £ 0.300 324025 2.6 +0.21 5.6 +17.79 1.24 £ 0.083 10.50 £ 1.707 6.85 £ 1.127 —0.36 £ 0.957
—0.56 —0.60, —0.51 109 0.88 £ 0.311 —0.51 £ 0.323 3.9+ 026 2.5 +0.17 45.5 £ 6.01 1.58 £ 0.060 10.93 £ 1.502 10.76 £ 1.465 —4.67 £ 1.113
—0.47 —0.51, —0.43 99 0.46 £ 0.307 0.02 £ 0.315 3.4+ 024 2.7+ 0.19 50.7 + 17.36 1.28 £ 0.076 9.82 + 1.248 8.94 £+ 1.381 —2.21 £ 0.988
—0.37 —0.42, —0.34 138 0.19 £ 0.254 —0.07 £ 0.259 33+0.18 29+ 0.16 474 £ 2752 1.15 £ 0.061 9.85 + 1.080 9.62 £ 1.145 —1.35 £ 0.819
—0.29 —0.34, —0.25 192 0.23 £ 0.240 —0.16 £ 0.196 3.4 +0.17 2.8 +0.14 0.4 + 11.94 1.22 £ 0.054 11.71 £ 1.186 7.92 £ 0.789 —0.03 £ 0.702
—0.20 —0.25, —0.16 222 0.11 £ 0.206 0.61 £ 0.206 324+0.14 3.0£0.13 51.1 + 39.87 1.08 + 0.047 9.69 + 0.888 9.37 £ 0.904 —0.74 £ 0.642
—0.12 —0.16, —0.08 226 —0.10 £ 0.221 —0.21 £ 0.205 35 +0.16 3.0+ 0.14 349 + 16.87 1.16 £ 0.055 10.98 £ 1.028 9.92 £ 0.930 —1.44 £0.718
—0.03 —0.07, 0.01 226 —0.05 £ 0.211 0.40 £ 0.184 324+0.15 29 +0.13 —1.5 £20.98 1.12 £ 0.050 10.38 £ 1.017 8.34 +£ 0.773 0.05 £ 0.623
0.06 0.01, 0.10 255 —0.36 £ 0.184 0.25 £0.178 3.14+0.13 2.7+ 0.11 25.8 + 15.68 1.15 £ 0.049 9.11 + 0.784 7.70 £ 0.693 —0.89 £ 0.539
0.14 0.10, 0.19 234 —0.41 £ 0.193 0.00 £ 0.201 3.14+0.13 29+ 0.12 —68.7 £ 56.01 1.07 £ 0.045 9.35 + 0.756 8.46 £ 0.888 0.41 + 0.552
0.23 0.19, 0.27 181 —0.55 £ 0.230 0.09 £ 0.225 33 +0.16 29 +0.14 34.7 + 25.90 1.12 £ 0.056 10.18 £ 1.053 9.38 £ 0.981 —1.07 £ 0.728
0.32 0.28, 0.36 154 —0.63 £ 0.185 0.38 £ 0.207 2.7 +0.15 2.1 £0.12 58.7 £ 11.70 1.29 £ 0.061 6.59 + 0.597 5.25 £ 0.722 —1.29 £ 0.477
0.40 0.36, 0.45 122 —0.51 £ 0.226 0.35 £ 0.211 25+0.15 24 +0.14 —10.2 £ 35.70 1.07 £ 0.061 6.34 + 0.825 5.56 £ 0.717 0.15 £ 0.557
0.49 0.45, 0.54 90 —0.57 £ 0.271 0.25 £ 0.292 2.74+0.18 2.5+ 0.16 80.5 + 65.21 1.09 + 0.065 7.49 £ 0.960 6.41 £+ 1.139 —0.19 £ 0.714
0.57 0.54, 0.62 65 —0.28 £ 0.455 —0.24 £ 0.335 3.6 +£0.30 2.6 +0.23 17.5 + 12.41 1.39 £ 0.083 12.66 + 2.141 7.43 £ 1.328 —1.82 £ 1.229
0.66 0.63, 0.71 50 —0.40 £ 0.247 0.29 + 0.305 2.1 +£0.21 1.7 £ 0.16 83.6 + 70.83 1.22 + 0.095 4.56 £ 0.600 3.08 £ 0.940 —0.17 £ 0.520
0.76 0.71, 0.80 29 0.12 £ 0.471 0.69 £ 0.331 2.6 £0.33 1.7 £0.21 —8.5 £ 16.79 1.51 £0.115 6.75 + 1.741 3.09 £ 0.774 0.56 £ 0.846
0.83 0.80, 0.88 27 —0.69 £ 0.246 0.58 £ 0.245 1.6 £ 0.21 0.8 + 0.11 —45.1 £9.36 1.90 + 0.103 1.64 + 0.430 1.63 £ 0.427 0.93 £+ 0.348

Note. See the discussion in Section 4.1.
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Table 21
Same as Table 20 (i.e., Using a Constant-width Binning Scheme), but with Photometric Parallaxes and Proper Motions Converted into Distances and Velocities Using a Reference Distance of 7.76 kpc

d dio, diy N o) (vp) a, b, o a/b o3, Thp T

(kpc) (kpc) (kms™ ") (kms™") (kms™ ") (kms™") (deg) (km® s (km” s~ (km” s72)
453 4.44, 4.62 26 44.70 £ 14.437 —0.53 £+ 13.031 78 £9.8 62+ 79 25.6 + 30.86 1.27 £ 0.117 263.1 £ 72.84 196.4 £ 54.04 —41.4 £45.25
4.76 4.62, 4.81 31 —9.54 £ 15.400 —6.19 £+ 10.718 85+ 9.7 60 £ 7.2 —0.2 £ 17.83 141 £ 0.111 320.1 + 74.49 160.5 £ 39.63 0.5 + 39.63
4.89 4.82, 5.00 34 14.90 £ 12.436 14.93 £ 9.121 75 +£9.2 50 £ 5.8 17.2 £ 14.89 1.50 £ 0.106 2329 £ 58.51 120.8 £ 28.26 —38.5 £29.11
5.11 5.01,5.21 35 0.39 £ 10.748 —5.08 £ 13.002 80 £ 9.0 59 £6.8 57.9 + 28.81 1.37 £ 0.110 231.9 £ 42.23 177.5 £ 53.75 —56.1 £ 34.48
5.34 5.22,542 47 —4.41 £ 10.930 8.90 + 12.457 87 +£7.9 74 + 6.8 86.4 £ 68.08 1.17 £ 0.090 300.1 £ 45.22 219.0 £ 60.35 —5.1 £+ 38.82
5.56 5.44, 5.65 67 15.27 £+ 10.189 9.71 £ 9.545 99 + 8.7 62 +53 40.0 £ 7.64 1.61 + 0.077 277.2 + 47.98 237.6 + 42.15 —111.9 £+ 35.17
5.78 5.66, 5.89 75 9.75 £+ 10.050 —11.72 £+ 8.208 89+ 7.0 72 £ 5.7 5.6 £17.79 1.24 £ 0.083 287.8 £ 46.76 187.6 £ 30.88 —10.0 £ 26.21
5.99 5.89, 6.13 109 25.05 + 8.836 —14.60 £ 9.163 112 £ 75 71 £49 45.5 £ 6.01 1.58 £ 0.060 310.4 + 42.66 305.7 £ 41.61 —132.6 £+ 31.60
6.25 6.13, 6.38 99 13.57 £ 9.096 0.71 £ 9.318 101 + 7.0 79 £ 5.6 50.7 £ 17.36 1.28 £ 0.076 291.0 £ 36.96 264.7 £ 4091 —65.4 £ 29.26
6.53 6.38, 6.64 138 5.95 + 7.879 —2.18 £+ 8.016 103 £ 54 90 + 5.1 47.4 £ 27.52 1.15 £+ 0.061 304.8 £ 33.44 298.0 £ 35.45 —41.7 £ 25.37
6.79 6.65, 6.92 192 7.50 £ 7.726 —5.15 £+ 6.299 110 £ 5.4 91 +4.4 0.4 £ 11.94 1.22 £ 0.054 376.8 + 38.17 255.0 £ 25.38 —0.8 £+ 22.60
7.07 6.92, 7.20 222 373 £ 6914 20.34 + 6.905 107 £ 4.5 99 +43 51.1 +39.87 1.08 £ 0.047 324.7 £ 29.75 314.0 + 30.30 —24.8 £ 21.50
7.34 7.20, 7.49 226 —3.42 £ 7.697 —7.45 £ 7.125 120 £ 5.6 104 £ 4.7 349 £ 16.87 1.16 £ 0.055 382.2 £ 35.76 345.3 £ 32.38 —50.0 £ 24.99
7.65 7.50, 7.80 226 —1.83 £ 7.646 14.52 £ 6.688 117 £ 54 105 £ 4.6 —1.5 £20.98 1.12 £ 0.050 376.5 + 36.88 302.7 £ 28.03 1.9 + 22.61
7.97 7.81, 8.12 255 —13.55 £ 6.942 9.55 £ 6.727 117 £ 4.9 102 £ 4.3 25.8 £ 15.68 1.15 £ 0.049 343.9 £ 29.61 290.7 £ 26.18 —33.6 £20.35
8.28 8.13, 8.46 234 —16.18 £+ 7.567 0.11 + 7.888 121 £5.0 113 £ 4.7 —68.7 £ 56.01 1.07 + 0.045 367.1 £ 29.70 332.1 + 34.86 16.1 + 21.69
8.61 8.46, 8.81 181 —22.48 £ 9.407 3.63 £9.170 135 £ 6.7 120 £ 5.9 34.7 £ 25.90 1.12 £ 0.056 415.7 £+ 42.99 382.9 £ 40.06 —43.6 £29.72
9.00 8.81,9.17 154 —26.91 + 7.898 16.32 + 8.828 116 £ 6.4 90 £5.1 58.7 £ 11.70 1.29 £ 0.061 281.1 £+ 25.47 223.8 + 30.80 —55.1 £ 20.34
9.34 9.17, 9.55 122 —22.38 £ 9.992 15.41 £ 9.362 112 £ 64 104 £ 6.1 —10.2 £ 35.70 1.07 £ 0.061 280.8 £ 36.52 246.3 £ 31.73 6.4 £ 24.68
9.75 9.55,9.93 90 —26.17 £ 12.539 11.45 + 13.468 127 + 8.3 117 £ 75 80.5 £+ 65.21 1.09 + 0.065 345.8 £ 44.35 296.1 £ 52.61 —8.6 £+ 33.00
10.10 9.96, 10.34 65 —13.45 £+ 21.765 —11.59 £ 16.043 174 + 14.4 125 £ 11.0 17.5 £ 12.41 1.39 + 0.083 606.0 £ 102.47 355.8 £ 63.55 —87.3 £ 58.84
10.50 10.37, 10.76 50 —19.99 £ 12.274 14.41 + 15.196 107 £ 10.3 87+ 7.8 83.6 + 70.83 1.22 + 0.095 227.2 + 29.89 153.1 + 46.81 —8.4 £ 2589
11.03 10.78, 11.21 29 6.11 £ 24.610 36.28 £+ 17.299 137 £ 17.2 91 £ 11.0 —8.5 £ 16.79 1.51 £ 0.115 352.7 £ 90.97 161.6 £ 40.44 29.1 £ 44.22
11.39 11.22, 11.66 27 —37.48 £+ 13.268 31.33 + 13.255 86 + 11.1 46 £+ 6.1 —45.1 £9.36 1.90 + 0.103 88.5 £23.20 88.1 £ 23.04 50.0 £+ 18.77

Note. See the discussion in Section 4.1.
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Table 22
Bin Statistics for the Rotation Curves of the “Metal-rich” Sample, Using the Same Constant-width Binning Scheme as in Table 18

ud Thi — Tlo d dp; — dio N 4 P N S ) p(p)

(mag) (mag) (kpe) (kpe) (pc?) (pe™) (pe™)

—0.81 0.080 535 0.196 25 688.1 0.036 3+15 0.12 + 0.062 0.004 + 0.0022
—0.73 0.073 5.55 0.186 31 776.5 0.040 8 +22 0.26 £ 0.070 0.010 £ 0.0028
—0.65 0.071 5.76 0.189 32 876.3 0.037 2+ 15 0.06 £ 0.047 0.002 £ 0.0017
—0.56 0.085 6.01 0.234 51 988.9 0.052 5+23 0.10 £ 0.045 0.005 £ 0.0023
—0.46 0.087 6.26 0.250 69 1116.0 0.062 8+ 3.0 0.12 £ 0.043 0.007 £ 0.0027
—0.36 0.086 6.56 0.257 107 1259.4 0.085 10 + 3.0 0.09 £ 0.028 0.008 £ 0.0024
—0.29 0.087 6.80 0.272 155 1421.2 0.109 20 £ 4.1 0.13 + 0.026 0.014 + 0.0029
—0.20 0.087 7.06 0.283 267 1603.8 0.166 34 +£5.6 0.13 £ 0.021 0.021 £ 0.0035
—0.12 0.087 7.35 0.294 306 1809.9 0.169 52 + 6.6 0.17 £ 0.022 0.029 £ 0.0037
—0.03 0.087 7.64 0.308 293 2042.5 0.143 66 + 6.8 0.23 £ 0.023 0.032 £ 0.0033
0.05 0.087 7.94 0.319 346 2305.0 0.150 93 + 83 0.27 £ 0.024 0.040 £ 0.0036
0.14 0.087 8.27 0.331 289 2601.1 0.111 101 + 8.1 0.35 £ 0.028 0.039 £ 0.0031
0.23 0.087 8.61 0.346 210 2935.4 0.072 78 +£ 6.9 0.37 £ 0.033 0.027 £ 0.0023
0.32 0.085 8.98 0.353 128 3312.6 0.039 44 +£55 0.34 £ 0.043 0.013 £ 0.0017
0.39 0.087 9.28 0.373 79 3738.2 0.021 29 £ 4.2 0.37 £ 0.054 0.008 + 0.0011
0.50 0.084 9.77 0.376 44 4218.6 0.010 13 +3.1 0.30 £ 0.070 0.003 £ 0.0007
0.67 0.066 10.57 0.323 20 5372.3 0.004 10+22 0.50 + 0.110 0.002 + 0.0004

Note. Wedge volumes V and densities p assume that the reference sample lies at distance 7.76 kpc. N(y) and p(y,;) denote the counts and number densities,
respectively, of objects that would pass a kinematic cut of y; < —2.0 mas yr~'. The uncertainties quoted refer to 1o ranges from 1000 parameteric bootstrap trials. See
Section 4.1.

Table 23
Same as Table 22, but for the “Metal-poor” Sample and with the Binning Scheme of Table 20

ud Thi — Tlo d dy — dio N 14 p N(p) f) (1)

(mag) (mag) (kpe) (kpe) (pc’) (pe™) (pe™)

—1.17 0.085 4.53 0.177 26 4243 0.061 3+1.6 0.12 £ 0.062 0.007 £ 0.0038
—1.06 0.086 4.76 0.188 31 478.8 0.065 10 £2.6 0.32 £ 0.085 0.021 £ 0.0055
—1.00 0.081 4.89 0.183 34 540.3 0.063 6+23 0.18 £ 0.068 0.011 £ 0.0043
—0.91 0.086 5.11 0.202 35 609.8 0.057 5+24 0.14 £ 0.070 0.008 + 0.0040
—0.81 0.082 5.34 0.200 47 688.1 0.068 13 £3.0 0.28 £ 0.063 0.019 £ 0.0043
—0.73 0.083 5.56 0.211 67 776.5 0.086 17 £33 0.25 £ 0.049 0.022 £ 0.0042
—0.64 0.086 5.78 0.229 75 876.3 0.086 18 £3.7 0.24 £ 0.050 0.021 £ 0.0043
—0.56 0.087 5.99 0.240 109 988.9 0.110 17 £4.0 0.16 £ 0.037 0.017 +£ 0.0041
—0.47 0.085 6.25 0.246 99 1116.0 0.089 22 +£4.0 0.22 £ 0.041 0.020 £ 0.0036
—0.37 0.086 6.53 0.259 138 1259.4 0.110 37 +4.7 0.27 £ 0.034 0.029 £ 0.0037
—0.29 0.086 6.79 0.270 192 1421.2 0.135 56 +5.8 0.29 £ 0.030 0.039 £ 0.0041
—0.20 0.087 7.07 0.284 222 1603.8 0.138 55+£62 0.25 £ 0.028 0.034 £ 0.0039
—0.12 0.087 7.34 0.294 226 1809.9 0.125 59 £ 6.7 0.26 £ 0.030 0.033 £ 0.0037
—0.03 0.087 7.65 0.307 226 2042.5 0.111 58 £6.5 0.26 £ 0.029 0.028 + 0.0032
0.06 0.087 797 0.320 255 2305.0 0.111 80+ 7.3 0.31 £ 0.028 0.035 £ 0.0031
0.14 0.087 8.28 0.331 234 2601.1 0.090 73+7.1 0.31 £ 0.030 0.028 £ 0.0027
0.23 0.087 8.61 0.345 181 2935.4 0.062 59 +6.2 0.33 £ 0.034 0.020 £ 0.0021
0.32 0.087 9.00 0.361 154 3312.6 0.046 46 £ 5.6 0.30 £ 0.036 0.014 £ 0.0017
0.40 0.087 9.34 0.374 122 3738.2 0.033 34 +£5.0 0.28 £+ 0.041 0.009 £ 0.0013
0.49 0.084 9.75 0.376 90 4218.6 0.021 27 + 4.4 0.30 £ 0.049 0.006 + 0.0010
0.57 0.083 10.10 0.387 65 4760.6 0.014 15 £3.7 0.23 £ 0.057 0.003 £ 0.0008
0.66 0.081 10.50 0.396 50 53723 0.009 10 £ 2.7 0.20 + 0.054 0.002 + 0.0005
0.76 0.084 11.03 0.425 29 6062.7 0.005 4+21 0.14 £ 0.074 0.001 £ 0.0004
0.83 0.083 11.39 0.438 27 6841.7 0.004 3+1.8 0.11 £ 0.068 0.000 + 0.0003

Note. See Section 4.1.
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Appendix I
Rotation Curves and Bin Statistics
in Tabular Form

Tables 12—15 present the variation of the proper motion ellipse
with distance, for the "Metal-rich" (Tables 12 and 13) and
"Metal-poor samples (Tables 14 & 15). The bin statistics for the
fine-grained binning scheme are presented in Tables 16 and 17.

For ease of interpretation and to aid direct comparison with
other work, we also tabulate the rotation curves and bin
statistics for a binning scheme with constant-width bins (in
photometric parallax) for each sample; see Tables 18-23.
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