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Abstract
Ovarian cancer remains the most lethal gynaecological malignancy, as its timely detection at early stages remains elusive.
Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy of biofluids has been previously applied in pilot
studies for ovarian cancer diagnosis, with promising results. Herein, these initial findings were further investigated by application
of ATR-FTIR spectroscopy in a large patient cohort. Spectra were obtained by measurements of blood plasma and serum, as well
as urine, from 116 patients with ovarian cancer and 307 patients with benign gynaecological conditions. A preliminary chemo-
metric analysis revealed significant spectral differences in ovarian cancer patients without previous chemotherapy (n = 71) and
those who had received neo-adjuvant chemotherapy—NACT (n = 45), so these groups were compared separately with benign
controls. Classification algorithms with blind predictive model validation demonstrated that serum was the best biofluid, achiev-
ing 76% sensitivity and 98% specificity for ovarian cancer detection, whereas urine exhibited poor performance. A drop in
sensitivities for the NACT ovarian cancer group in plasma and serum indicates the potential of ATR-FTIR spectroscopy to
identify chemotherapy-related spectral changes. Comparisons of regression coefficient plots for identification of biomarkers
suggest that glycoproteins (such as CA125) are the main classifiers for ovarian cancer detection and responsible for smaller
differences in spectra between NACT patients and benign controls. This study confirms the capacity of biofluids’ ATR-FTIR
spectroscopy (mainly blood serum) to diagnose ovarian cancer with high accuracy and demonstrates its potential in monitoring
response to chemotherapy, which is reported for the first time.

Keywords Ovarian cancer . Chemotherapy . Biofluids . Liquid biopsies . ATR-FTIR spectroscopy . Spectroscopy

Introduction

Ovarian cancer is the 8th most common cancer-related cause of
death in women internationally, with incidence and mortality
projected to increase markedly in the next 20 years [1, 2]. It also
represents the most fatal gynaecological cancer due to non-
specific symptoms at its presentation, leading in most cases (>

70%) to being diagnosed in advanced stages of disease [3].
Epithelial ovarian cancer (EOC) represents the most common
type (approximately 90% of cases), with histological subclassifi-
cations including serous, mucinous, endometrioid, and clear-cell
adenocarcinomas and carcinosarcomas. Among these, high-
grade serous carcinomas compose the largest group, comprising
70–80% of all EOCs. Other rarer histologies include stromal and
germ cell tumours [3, 4]. Current treatment modalities include a
combination of surgery and chemotherapy, with the most com-
monly used chemotherapy agents being platins (either cisplatin
or carboplatin) with the addition of a taxane (paclitaxel). In cases
where upfront operating is deemed unlikely to achieve complete
cytoreduction, chemotherapy is initiated first (in regimes de-
scribed as neo-adjuvant chemotherapy—NACT) followed by
interval debulking surgery (IDS) and subsequent administration
of further chemotherapy cycles [4, 5].
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In an attempt to increase earlier detection of ovarian cancer,
large trials have been conducted, which used a combination of
imaging (pelvic ultrasonography) and serum biomarkers [can-
cer antigen CA125, human epididymis protein 4 (HE4)] to
produce screening or diagnostic algorithms [6–9]. However,
their outcomes failed to demonstrate robust reduction in mor-
tality rates. Additionally, CA125, which is the most common-
ly used serum biomarker, lacks adequate sensitivity and spec-
ificity as it can be raised in many other non-gynaecological
malignancies and non-malignant conditions (such as benign
ovarian cysts, uterine fibroids, adenomyosis, and endometri-
osis) [10, 11]. Particularly in endometriosis, its levels can be
significantly elevated in moderate or severe disease [12].
Other tests used in ovarian cancer diagnosis (such as comput-
ed tomography, magnetic resonance imaging, tissue biopsies)
are expensive, invasive, and time consuming.

The lack of currently available ‘gold standards’ in ovarian
cancer detection has led to an urgent need for the development
of new accurate, minimally invasive and cost-effective diag-
nostic tools. One of the promising newmodalities is vibration-
al spectroscopy, which has shown great potential in the clas-
sification between normal and pathological biological mate-
rials [13]. Attenuated total reflection Fourier-transform infra-
red (ATR-FTIR) spectroscopy is a frequently used vibrational
spectroscopic technique, which has been experimentally ap-
plied in human tissues and biofluids [14]. Its main advantage
compared to other infrared (IR) techniques is that the evanes-
cent wave produced by the IR source penetrates the sample
only by a few microns, rendering it particularly convenient for
assessment of biofluids. ATR-FTIR spectra represent a series
of wavenumber absorbance intensities produced by molecular
motion upon interaction with the IR source [15, 16].
Additionally, the “bio-fingerprint” region in the mid-IR area
of the electromagnetic spectrum contains absorbing frequen-
cies for many biomolecules, which can lead to the discovery
of new biomarkers [17].

Regarding biological substrates, blood and urine are ideal
candidates for cancer screening or diagnosis as they are easy
to collect and require minimal (venepuncture) or noninvasive
(urine collection) procedures [15]. Blood plasma and serum
(which is plasma without clotting factors) contain a multitude
of constituents without the presence of erythrocytes, which
can interfere with spectra obtained from other important bio-
molecules, and are considered more suitable biofluids than
whole blood for spectroscopic investigations in cancer re-
search [18]. Blood or urine ATR-FTIR spectroscopy has been
experimentally applied in several types of cancer including
breast [19], brain [20, 21], prostate [22], gastrointestinal
[23–25] and endometrial [26, 27]. Its performance has also
been explored in ovarian cancer, for investigation of diagnos-
tic accuracy [18, 27] and identification of new biomarkers [27,
28], by studies involving small datasets, with promising
results.

For the acquisition of reliable and clinically interpretable
results, appropriate chemometric techniques are applied.
Vibrational spectroscopic data are inherently multivariate
and require complex analytical approaches. Such multivariate
methods include principal component (PCA) and linear dis-
criminant analysis (LDA), which can achieve segregation be-
tween different classes [29]. The diagnostic potential of spec-
troscopy can be further enhanced by applying machine learn-
ing methods, which utilise a wide range of classification algo-
rithms such as linear discriminant classifier (LDC) and sup-
port vector machines (SVMs) [30]. Herein, the potential of
ATR-FTIR spectroscopy in ovarian cancer diagnosis was fur-
ther interrogated, through spectrochemical analyses in blood
and urine samples from a large patient cohort. Additionally, as
part of recruited ovarian cancer patients had received NACT,
chemotherapy effects on acquired spectra were also explored.

Materials and methods

Patients and samples

Between April 2018 and November 2019, 423 consecutive
patients were recruited (n = 116 with ovarian cancer, n = 307
with benign gynaecological conditions as controls). The ma-
jority of ovarian cancer patients (n = 71) had not received
chemotherapy whereas the rest (n = 45) had received NACT.
For the latter group, the median number of NACT cycles was
4 with a median interval of 3 weeks between cycles; 41 pa-
tients received a combination of carboplatin and paclitaxel and
4 patients, single-agent carboplatin. Blood samples were col-
lected from all participants and urine from all patients with
ovarian cancer. Three patients from the control group did not
provide urine. Informed consent was taken from all partici-
pants. Samples were collected upon patients’ attendance to
Royal Preston Hospital (UK) for surgery and therefore were
fasting samples. Serum CA125 levels were measured for all
patients at the time of their attendance for surgery and for
ovarian cancer patients who received NACT at the time of
their disease diagnosis as well. Table 1 contains epidemiolog-
ical as well as CA125 data for the separate study groups. For
NACT ovarian cancer patients, the mean interval between
completion of their pre-operative chemotherapy and IDS
was 39 days. For each patient, two blood samples were ob-
tained, one in tubes containing EDTA anticoagulant and one
in serum gel tubes. Urine was collected following urethral
cleansing and sterile urinary catheterisation without the use
of lubricant gel. Blood samples were centrifuged at
2200 rpm for 15 min (local protocol), to obtain plasma and
serum from EDTA and serum gel tubes respectively. Plasmas
and serums were subsequently snap-frozen in liquid nitrogen
and stored at − 80 °C. Urines were also stored at − 80 °C
without centrifugation and snap-freezing.
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Prior to slide preparation, samples were thawed at room tem-
perature and 60 μl of individual biofluids was pipetted on naked
FisherBrand™ andLeica™ glass slides. All slideswere allocated
a specific serial number for patient confidentiality. Following
overnight drying, samples were transferred to the laboratory in
wooden slide trays for ATR-FTIR spectroscopic analysis. All
slides were stored in a de-humidified glass container to prevent
sample condensation and physical damage. The study was
granted ethical approval by the East of England - Cambridge
Central Research Ethics Committee (archival genito-urinary tis-
sue, blood, urine, saliva and ascitic fluid collection; REC refer-
ence: 16/EE/0010; IRAS project ID: 195311).

Identification of pathology for all participants, as well as
staging for patients with ovarian cancer, was based on histo-
pathology reports after processing of surgical specimens. All
ovarian cancer patients had no other synchronous malignan-
cies. Tables 2 and 3 demonstrate staging data for ovarian
cancers and histological diagnoses for the whole cohort, re-
spectively. For most ovarian cancers, the histological subtype
was epithelial (with 66% being high-grade serous carcinomas)
and only one patient had a germ cell tumour. Staging of ovar-
ian malignancies was conducted according to the International
Federation of Gynecology and Obstetrics (FIGO) system [32].
Twenty eight percent of ovarian cancer patients were early
stage (FIGO I or II) and all NACT patients had advanced
metastatic disease (FIGO III or IV). Further demographic data
(including patient comorbidities) are available in non-patient
identifiable databases.

Spectral acquisition

ATR-FTIR spectra were obtained via a Bruker TENSOR 27
FTIR spectrometer with Helios ATR attachment, containing a
diamond crystal (Bruker Optics Ltd., Coventry, UK) and op-
erated using OPUS 6.5 software. Spectra for each sample were
randomly acquired from ten different points. Data acquisition
parameters were as follows: 8 cm−1 spectral resolution giving
4 cm−1 data spacing, 32 scans, 6 mm aperture setting and 2×
zero-filling factors. The ATR diamond crystal was cleaned
with distilled water and dried with tissue paper between dif-
ferent samples. A background absorption spectrum (for atmo-
spheric correction) was taken prior to each new sample
analysis.

Computational analysis

The chemometric techniques applied in this study have been
previously described by our group [33]. Only the spectral
fingerprint region was used for data analysis. Spectral pre-
processing consisted of the following: Savitzky-Golay (SG)
smoothing (window of 7 points, 1st-order polynomial fitting)
and 2nd derivative followed by vector normalisation. SG
smoothing corrects for random noise, 2nd derivative corrects
for baseline distortions and resolves fine spectral structure
such as closely aligned peaks (despite potential for reduced
signal-to-noise ratio), and vector normalisation corrects for
physical differences between samples such as thickness, light
scattering and concentrations [34]. In addition, the 10 spectral
replicas per sample were averaged in order to work on sample-
basis models. Exploratory and discriminant analyses were per-
formed with the pre-processed and mean-centred data.
Principal component analysis (PCA) was used for exploratory
analysis [35]. With this method, pre-processed spectra are
decomposed into a certain number of principal components
(PCs), which account for the majority of variance within the
dataset. Each PC is composed of scores and loadings; the

Table 1 Epidemiological and serum CA125 data for the different study
groups. CA125 level was considered elevated if measuring > 35 u/ml

Mean [range]

Ovarian cancers

Age

All patients (n=116) 63 [20–84]

No NACT (n=71) 61 [20–84]

NACT (n=45) 65 [43–83]

ΒΜΙ (kg/m2)

All patients (n=116) 26.7 [16.6–48.6]

No NACT (n=71) 27.4 [18.2–48.6]

NACT (n=45) 25.8 [16.6–36.4]

CA125 (u/ml)

Non-chemotherapy group (n=71) 590 [5–8366]

Chemotherapy group, before NACT (n=45) 2595 [62–23455]

Chemotherapy group, after NACT (n=45) 135 [8–1104]

Benign controls (n=307)

Age 47 [19–89]

BMI (kg/m2) 28.5 [17.3–49.8]

CA125 (u/ml) 55 [1–2627]

NACT neo-adjuvant chemotherapy

Table 2 FIGO staging of
ovarian cancer patients Non-

NACT
NACT

ΙΑ 10 –

IC 16 –

ΙΙΑ 5 –

IIB 2 –

ΙΙΙΑ 5 –

ΙΙΙΒ 4 1

IIIC 27 36

IVA 2 5

IVB – 3

NACT neo-adjuvant chemotherapy
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former is used to detect clustering patterns, relevant to chem-
ical similarities or dissimilarities among samples, and the lat-
ter for identification of spectral bands (wavenumbers), which
can separate samples from different biological classes, and
therefore can be associated with possible spectral biomarkers.

PCA models were built using the PLS Toolbox version
7.9.3 (Eigenvector Research, Inc., USA), and discriminant
analysis was performed using the Classification Toolbox for

MATLAB [36]. Furthermore, partial least squares discrimi-
nant analysis (PLS-DA) was also used as a comparative tech-
nique. PLS-DA is a feature extraction and classification algo-
rithm, based on a linear model for which the classification
criterion is obtained by PLS [37]. In PLS-DA, a PLS model
is applied to pre-processed spectra, reducing the original spec-
tral variables to a few latent variables in an iterative process,
where the class labels for each sample are known in the train-
ing set. Then, a threshold value that divides the classes’ re-
gions is found [38].

Statistical analysis

The classification models were evaluated by calculating some
figures of merit (accuracy, sensitivity, specificity and F-score)
in the test set, composed of 30% of samples selected by using
the Morais-Lima-Martin (MLM) algorithm [39]. Training
samples, composed of 70% of the dataset, were used for mod-
el construction via training and cross-validation [for sample
splitting methodology, see Supplementary information (ESM)
Table S1]. The accuracy represents the total number of sam-
ples correctly classified considering true and false negatives,
the sensitivity represents the proportion of positives (i.e. ovar-
ian cancer samples) correctly identified, the specificity repre-
sents the proportion of negatives (i.e., benign control samples)
correctly identified and the F-score measures the overall mod-
el performance considering imbalanced classes [40]. These
parameters are calculated as follows:

Accuracy %ð Þ ¼ TPþ TNð Þ= TPþ FPþ TNþ FNð Þ½ � � 100
Sensitivity %ð Þ ¼ TP= TPþ FNð Þ½ � � 100
Specificity %ð Þ ¼ TN= TNþ FPð Þ½ � � 100

F−score %ð Þ ¼ 2� SENS� SPECð Þ= SENSþ SPECð Þ

where TP stands for true positives, TN for true negatives,
FP for false positives and FN for false negatives. SENS stands
for sensitivity and SPEC for specificity.

P-values were calculated for two-dimensional PCA score
plots using a MANOVA test and for individual wavenumbers
based on an ANOVA test. Statistical significance was consid-
ered at P < 0.05 and statistical high significance at P < 0.001.

Results and discussion

Application of spectroscopy can generate important informa-
tion about constituents of biological samples. The “fingerprint
area” at 1800–900 cm−1 in particular provides crucial data,
which can lead to characterisation of several key biomolecules
[14]. Herein, ATR-FTIR spectroscopy was used to identify
the potential of plasma, serum and urine in a large prospective
study for the detection of ovarian cancer. The study groups,
comprising ovarian cancers with variable histologies and
stages of disease, and benign controls with a wide range of

Table 3 Histopathological data for the entire cohort. Staging of
endometriosis patients was based on intra-operative findings according
to the American Society of Reproductive Medicine staging system [31]

No. of patients

No NACT NACT

Ovarian cancers

High-grade serous 33 43

Low-grade serous 5 –

Primary peritoneal serous – 1

Mucinous 10 –

Endometrioid 9 –

Clear cell 8 –

Carcinosarcoma 4 1

Anaplastic 1 –

Immature teratoma 1 –

Benign controls

Ovarian cysts (non-endometriomas)

Cystadenomas, fibromas, cystadenofibromas 71

Mature cystic teratomas 13

Follicular 3

Haemorrhagic 2

Struma ovarii 2

Brenner 1

Sertoli-Leydig 1

Indeterminate 2

Endometriosis (including endometriomas)

Stage 1 16

Stage 2 9

Stage 3 19

Stage 4 28

Uterine fibroids and/or adenomyosis 69

Pelvic inflammatory disease 9

Endometrial/cervical polyps 8

Hydrosalpinx/paratubal cysts 7

Uterine prolapse 3

Peritoneal leiomyomatosis 1

Endometrial hyperplasia 1

Cervical intraepithelial neoplasia (CIN) 1

Normal (no pathology identified) 41

NACT neo-adjuvant chemotherapy
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gynaecological pathologies, provide a “real-world” clinical
setting. Additionally, the consecutive recruitment of partici-
pants eliminated the risk of patient selection bias.

An initial exploratory analysis was performed to identify
potential significant spectral differences between two sub-
groups in each of the study’s main patient cohorts (Fig. 1).
For controls, this comparison was made between patients with
endometriosis (a condition that has a propensity towards ovar-
ian malignancy) [41] and patients with all other benign pathol-
ogies. PCA scores identified no difference for blood plasma or
serum and a marginal statistically significant difference for
urine (P = 0.01). Therefore, controls were used as one entity
in comparisons. On the other hand, the comparison between
ovarian cancer patients without previous chemotherapy and
post-NACT reveals high statistically significant differences
for blood plasma or serum (P ≈ 10−4) and marginal statistical-
ly significant difference for urine (P = 0.01). As this indicated
a potential effect of chemotherapy on spectra, these subgroups
were compared separately against the whole cohort of
controls.

Exploratory analysis using two-dimensional PCA scores
plots suggests that serum is the best for differentiation of both
groups of ovarian cancer from benign controls (Fig. 2). PLS-
DA was the best discrimination algorithm in all comparisons
and for all biofluids, as it consistently achieved the highest F-

scores (see ESM Table S2). Figure 3 demonstrates discrimi-
nant function plots on training and test samples, obtained with
this algorithm for the three biofluids. With regard to blood-
derived biofluids, serum achieved the highest sensitivity,
specificity and accuracy (76%, 98% and 94% respectively)
in the diagnosis of ovarian cancer. Plasma’s statistical metrics
were also satisfactory though slightly lower (71%, 84% and
81% respectively). A very interesting finding is the drop in
sensitivity for identification of ovarian cancer post-NACT in
both biofluids (57% for serum and 64% for plasma), whereas
high specificities and accuracies are maintained (85–96%)
(Table 4). Similar trends are observed in the other two classi-
fication algorithms (PCA-LDA, SVM) used in this study (see
ESM Table S2). This finding could suggest a shift towards a
more “benign” pattern in spectra obtained from blood
biofluids post chemotherapy and is reported for the first time.
It is also consistent with the fact that all NACT ovarian cancer
patients had chemo-sensitive disease, exhibiting a substantial
drop in CA125 at IDS from baseline levels (Table 1), and a
reduction in tumour load at their interval computed tomogra-
phy scan.

Obtained regression coefficient (RC) plots for identifica-
tion of key biomarkers support the aforementioned conclusion
(Fig. 4). In plasma, there were eight peaks with RC > 1 for the
non-chemotherapy ovarian cancers but only three for the

Fig. 1 PCA score plots with P-values for intra-class comparisons in plas-
ma, serum and urine. Top graphs: non-endometriosis (benign) versus
endometriosis benign controls. Bottom graphs: non-chemotherapy (OC

no chemo) versus NACT (OC chemo) ovarian cancer patients. OC, ovar-
ian cancers; chemo, chemotherapy; NACT, neo-adjuvant chemotherapy
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NACT patients in comparisons with controls. In serum, re-
spective comparisons provided seven peaks with RC > 4 for
the former group but none with RC > 2 for the latter. These
observations suggest more “subtle” differences between spec-
tra from post-chemotherapy ovarian cancers and benign pa-
tients. Additionally, they probably account for the higher sen-
sitivity, specificity and accuracy obtained with serum in clas-
sification of ovarian cancers without previous chemotherapy,
as well as the bigger drop in sensitivity post-NACT compared
to plasma.

Interestingly, in both biofluids, the majority of peaks are
observed at 1000–1200 cm−1 and 1500–1700 cm−1 wave-
length regions, which have been assigned to glycoproteins
[42, 43]. Spectral absorbances arise from vibrations of carbo-
hydrates’ sugar rings at the former and peptide bonds at the
latter [42–44]. Among other glycoproteins that are detected in
blood of patients with ovarian cancer and benign
gynaecological pathologies (such as HE4, CA15-3, CA72-
4), CA125 has by far the highest molecular weight (due to
its heavy glycosylation and lengthier protein backbone) and
exhibits the widest concentration differences between ovarian
malignancy and non-malignant states [45–48]. It is therefore
likely that CA125 is the main glycoprotein contributing to
absorbances in the two aforementioned wavelength regions.

CA125 belongs to the big family of mucins, all being glyco-
proteins, and CA125 is their largest member [49]. Vibrational
bands characteristic for mucins have been described at the
spectral region 1040–1120 cm−1 [50], at which serum
(predominantly) and plasma featured several peaks.
Remarkably, absorbance intensities were stronger for the
non-chemotherapy ovarian cancers compared to NACT pa-
tients in both biofluids, which correlates with the observed
magnitude of differences in mean CA125 levels between each
of these two groups and controls (Fig. 4, Table 1).

Peaks at RC plots are produced by differences in constitu-
ents of biofluids between cases and controls. CA125 has been
found to express varied isoforms in ovarian malignancies and
benign gynaecological pathologies due to its differential gly-
cosylation in these two entities. In benign conditions, CA125
glycan chains are predicted to contain higher amounts of ga-
lactose and N-acetylglucosamine carbohydrates, whereas in
ovarian cancer there is a higher content in sialic acid and
mannose glycoside residues [51–54]. FTIR spectroscopy has
been previously applied for characterisation of carbohydrates
[42, 55]. Prominent peaks for sialic acid and mannose have
been identified at approximately 1030 cm−1 and 1070 cm−1,
respectively [42], and these peaks had consistently higher ab-
sorbance intensities in the ovarian cancer groups compared to

Fig. 2 PCA score plots with P-values for inter-class comparisons in plas-
ma, serum and urine. Top graphs: non-chemotherapy ovarian cancers
(OC no chemo) versus all benign controls (controls). Bottom graphs:

NACT ovarian cancers (OC chemo) versus all benign controls (controls).
OC, ovarian cancers; chemo, chemotherapy; NACT, neo-adjuvant
chemotherapy

Giamougiannis P. et al.



controls. On the other hand, peaks that could be attributed to
N-acetylglucosamine and galactose (at approximately
1000 cm−1 and 1160 cm−1, respectively) [42, 55, 56] exhibited
consistently higher absorbance in controls (Fig. 4). These ob-
servations could suggest a potential for ATR-FTIR spectros-
copy to discriminate between benign and malignant CA125
isoforms. Of note, all the aforementioned peaks had lower
RCs in the comparisons of NACT patients versus controls
(Fig. 4), implying a potential for spectroscopic identification
of chemotherapy effects in ovarian cancer.

A peak that merits attention is observed at 1740 cm−1,
assigned to the C=O stretching vibration of lipids [57]. This
band demonstrated consistently higher RCs in the NACT
group compared to non-chemotherapy ovarian cancer patients

in plasma and serum (Fig. 4). Interestingly, use of platinum
and taxane chemotherapy agents has been associated with
hyperlipidaemia in testicular and breast carcinomas respec-
tively [58, 59], and increased cellular lipid consumption has
been associated with chemoresistance in ovarian cancer [60].
Cancer cells utilise high amounts of lipids to meet their energy
demands, and increased circulating lipids following effective
chemotherapy might reflect a decrease in this metabolic activ-
ity with decelerated tumour growth [59, 60]. As all NACT
patients in our study had chemo-sensitive disease, their in-
creased blood lipid levels might be an indirect measure of their
response to treatment. Although other factors may have con-
tributed to these changes (such as cachexia in ovarian cancer
patients without previous treatment and improved appetite

Fig. 3 PLS-DA discriminant function plots for plasma, serum and urine.
Top graphs: non-chemotherapy ovarian cancers (OC no chemo) versus all
benign controls (controls). Bottom graphs: NACT ovarian cancers (OC

chemo) versus all benign controls (controls). OC, ovarian cancers; che-
mo, chemotherapy; NACT, neo-adjuvant chemotherapy. o = training
samples; + = test samples

Table 4 PLS-DA statistical
metrics in the classification of the
two ovarian cancer groups (non-
chemotherapy—OC no chemo,
NACT—OC with chemo) from
benign controls for plasma, serum
and urine

Plasma Serum Urine

OC no
chemo

OC with
chemo

OC no
chemo

OC with
chemo

OC no
chemo

OC with
chemo

Sensitivity 71% 64% 76% 57% 29% 57%

Specificity 84% 88% 98% 96% 87% 92%

Accuracy 81% 85% 94% 91% 76% 88%

OC ovarian cancers, chemo chemotherapy, NACT neo-adjuvant chemotherapy
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leading to higher lipid intake after NACT), spectral changes at
1740 cm−1 could exhibit potential for monitoring response to
chemotherapy.

Contrary to plasma and serum, PCA scores for urine dem-
onstrated marginal statistically significant differences in the
comparisons between ovarian cancer groups and controls
(Fig. 2). This was reflected in the poor sensitivity (29%) for
diagnosis of ovarian cancer patients without previous chemo-
therapy obtained with the PLS-DA algorithm. Accuracy was
also lower (76%) whereas a fairly high specificity was main-
tained (87%). A possible reason for these suboptimal results
could be the use of un-centrifuged urine, containing contam-
inants (such as microorganisms and cellular material) that
might have obscured signals from important biomolecules.
Strikingly though, sensitivity was two times higher for the
NACT ovarian cancer group (57%), demonstrating an oppo-
site trend to what was observed in plasma and serum.
Specificity and accuracy were also improved (92% and 88%
respectively) (Table 4). PCA-LDA and SVM algorithms pro-
vided similar trends (see ESM Table S2). Additionally, the
majority of peaks at 1000–1200 cm−1 and 1500–1700 cm−1

wavelength areas had much smaller RCs (< 0.4) and generally
exhibited similar amplitudes with peaks in other spectral re-
gions (Fig. 4). This observation suggests that glycoproteins
(including CA125) demonstrated much lower absorbance in-
tensities in urine compared to plasma and serum. Indeed, there
was only one prominent peak allocated to mucins in the non-
chemotherapy ovarian cancer group (at 1040 cm−1) [50],
which exhibited a substantial drop in NACT patients (from
RC 0.9 to 0.1) (Fig. 4). These results are probably due to the
markedly low urinary CA125 concentrations, with much
smaller mean differences between patients with ovarian can-
cer and benign gynaecological conditions than the ones pres-
ent in blood [47, 61].

Taking into consideration the aforementioned findings, it is
likely that biomolecules other than glycoproteins contributed
to the higher sensitivity obtained in urine for the NACT ovar-
ian cancer patients. The bandwith the highest RC in this group
(and the only one demonstrating a considerable drop in the
non-chemotherapy ovarian cancers—from an approximate
RC 0.45 to 0.2) was located at 1080–1100 cm−1 (Fig. 4).
This band has been assigned to phosphate vibrations of

Fig. 4 PLS-DA regression coefficient plots for identification of spectral
biomarkers in plasma, serum and urine. Key wavenumber regions have
been marked with different colours. Top graphs: non-chemotherapy ovar-
ian cancers (OC no chemo) versus all benign controls (controls). Bottom

graphs: NACT ovarian cancers (OC chemo) versus all benign controls
(controls). OC, ovarian cancers; chemo, chemotherapy; NACT, neo-
adjuvant chemotherapy
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DNA but also contains a peak at the IR spectrum of poly-
amines [57, 62]. Polyamines (spermine, spermidine, putres-
cine) are low molecular weight molecules that participate in
cellular proliferation and DNA synthesis. They are known to
interact with DNA bases and phosphate groups, and these
adducts produce strong vibrations at the 1080–1100 cm−1

spectral domain [63]. Interestingly, the amount of excreted
polyamines in urine increases after platinum-based chemo-
therapy in ovarian cancer, but this effect is mostly observed
in patients with chemo-sensitive disease [64]. Therefore, the
height of the band at 1080–1100 cm−1 may prove useful for
monitoring response to chemotherapy, potentially through de-
tection of complexes between polyamines and phosphate on
cell-free DNA in urine. Of note, acetylated spermine has been
investigated as a possible urinary biomarker for the diagnosis
of ovarian cancer [65].

Contrary to what was observed in plasma and serum, ab-
sorbance at 1740 cm−1 wavelength (produced as previously
stated by bonds in lipids) was stronger in the non-
chemotherapy ovarian cancer group (RC 0.5) compared to
NACT patients (RC 0.1) (Fig. 4). The effect of chemotherapy
in urinary lipid concentrations has not been investigated, al-
though a study has reported significantly lower phospholipids
in urine of breast cancer patients following surgery (i.e., after
reduction or elimination of tumour load) [66]. Therefore, more
intense absorbances at 1740 cm−1 wavelength in blood
biofluids post-NACT, with an opposite trend in urine featur-
ing higher peaks before treatment initiation, might in combi-
nation suggest increased chemosensitivity.

An interesting outcome of urine spectroscopy was the pres-
ence of a marginal statistically significant difference (P =
0.01) between patients with endometriosis and other benign
gynaecological abnormalities (Fig. 1). This difference was not
present in plasma and serum, suggesting a potential for ATR-
FTIR spectroscopy to classify endometriosis in urine samples.
Previous studies have revealed some urinary biomarkers
(mainly enzymes and peptides) with good discriminatory abil-
ity, using methods that included mass spectrometry but not
vibrational spectroscopy [67, 68]. However, further chemo-
metric evaluation of this finding was outside the context of
this study.

Two previous studies have investigated the performance of
biofluids in ovarian cancer diagnosis with ATR-FTIR spec-
troscopy [18, 27]. In both studies, patients had not received
chemotherapy. Gajjar et al. found classification accuracies of
96.67% for plasma and 95% for serum in a cohort comprising
30 ovarian cancer patients and 30 controls with benign
gynaecological pathologies. Sensitivities and specificities
were not calculated and, although it was stated that 86.7% of
ovarian cancer patients had raised CA125 levels, CA125 con-
centrations were not reported; CA125 levels were not avail-
able for the benign control group. In their cohort, 60% of
patients had early-stage disease (FIGO I and II) compared to

46.5% in our study for the non-chemotherapy group, with
similar distribution of ovarian cancer histological subtypes
[18]. Paraskevaidi et al. assessed the performance of urine in
a cohort comprising 10 ovarian cancer patients and 10 healthy
controls (without stating if benign pathology was present) and
found sensitivity, specificity and accuracy of up to 100%,
97.5% and 98.3% respectively. CA125 levels were not avail-
able and, although it was reported that all ovarian cancer pa-
tients had high-grade disease, staging was not defined [27].
The differences in our outcomes (which were slightly lower
for plasma and serum but markedly lower for urine) are prob-
ably due to the much bigger size of our cohort, which in-
creased patient heterogeneity, but at the same time provides
a m o r e p r a g m a t i c e s t i m a t e o f A T R - F T I R
spectrochemical performance towards ovarian cancer detec-
tion in the general population. This is particularly relevant
for the study by Paraskevaidi et al., whose cohort size was
approximately 20 times smaller than ours and might have
compared advanced-stage ovarian cancer patients to individ-
uals with absent pathology, thus optimising outcomes but at
the same time not reflecting a “real-life” situation. The possi-
bility of differences in technical parameters (such as methods
of sample collection, preparation and spectroscopic measure-
ments) between the two aforementioned studies and ours was
ruled out, as same processes were used. It is also not possible
to comment on whether epidemiological factors (such as age,
BMI, comorbidities) have affected outcomes, as none of these
studies (including ours) performed regression analyses for
these variables.

In their study, Paraskevaidi et al. also identified potential
diagnostic biomarkers, whereas biomarker assignment for the
dataset included in the paper by Gajjar et al. was performed in
a separate study by Owens et al. [28]. The latter identified
intense absorbances in the ovarian cancer group at 1000–
1200 cm−1 wavelength area for plasma but not for serum.
This is in partial agreement with our findings and reinforces
our impression that circulating glycoproteins in blood (pre-
dominantly CA125) are strong classifiers of ovarian cancer
detected through ATR-FTIR spectroscopy. With regard to
urine, there was a single common peak (at 1040 cm−1) be-
tween our study and the one by Paraskevaidi et al., which as
previously stated has been assigned to mucins [50]. Taken
together, these observations suggest a consistency of spectro-
scopic changes that could be attributed to CA125 between
different studies, highlighting its importance as a potential
biomarker in detection of ovarian cancer through vibrational
spectroscopy.

Several systematic reviews have investigated the perfor-
mance of serum biomarkers in identification of ovarian malig-
nancies. The CA125 assay exhibits 79% sensitivity and 78%
specificity, whereas for HE4, sensitivities and specificities
range between 74–79% and 87–93%, respectively [69, 70].
In our study, CA125 had similar rates with the ones reported
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in the literature, featuring 85% sensitivity and 75% specificity
at the 35 u/ml cut-off threshold. The combined use of CA125
and HE4 can raise sensitivity up to 87% but specificity does
not overcome 82% [70]. Predictive models that use pelvic
ultrasonography alone or in combination with CA125 levels
have demonstrated sensitivities up to 93% and specificities up
to 92% [71]. However, these algorithms rely on the presence
of a pelvic mass, which is not always present in ovarian cancer
cases. In our study, ATR-FTIR spectroscopy of blood serum
achieved 76% sensitivity (overall similar to serum bio-
markers) but 98% specificity, which is superior to all the
aforementioned modalities, and had excellent diagnostic ac-
curacy (94%). Compared to serum assays, it is more cost-
effective and quicker, as it does not require the use of reagents
and produces results within minutes (instead of hours or oc-
casionally days). In relation to ultrasonography, it is not oper-
ator dependent and can be associated with higher patient ac-
ceptance, as it avoids the discomfort and intimacy of
transvaginal scanning. Additionally, it does not require the
presence of a distinct ovarian tumour, which is a prerequisite
in ultrasound-based models, making it applicable to any pa-
tient presenting with suspicious symptoms for ovarian cancer.
Based on its high specificity, a negative test could reliably
exclude the presence of ovarian cancer whereas a positive test
would prompt further investigations, thus reducing the
amount of unnecessary interventions and patient anxiety.

The main strengths of this study are the size of its cohort
(the biggest employed so far in ATR-FTIR spectroscopy of
biofluids for ovarian cancer detection) and its prospective de-
sign and consecutive recruitment of participants. In this field,
the performance of blood-derived biofluids and urine is
assessed simultaneously for the first time. It included patients
with a wide range of benign gynaecological conditions as well
as a variety of ovarian cancer histological subtypes and stages,
providing a realistic approach to the encounter of these entities
in the general population. It also involves the first attempt to
detect chemotherapy-induced spectrochemical changes in
biofluids of ovarian cancer patients, and a possible correlation
of these alterations with prediction of chemosensitivity. Its
main weaknesses are the lack of regression analyses to evalu-
ate the impact of confounding factors, along with the lack of
subgroup analyses to estimate performance in early-stage-
disease detection, which is the main challenge in the timely
diagnosis of ovarian cancer. These parameters would limit
direct clinical application of blood serumATR-FTIR spectros-
copy, as a diagnostic tool in ovarian malignancy.
Additionally, the assessment of chemotherapy effects was
not conducted on a unique ovarian cancer patient group
followed up linearly pre- and post-NACT, and as such, the
reported outcomes should be regarded as preliminary indirect
evidence about the potential of vibrational spectroscopy in
investigating treatment response.

In conclusion, our study has shown that ATR-FTIR spec-
troscopy of blood-derived biofluids (predominantly serum)
compares well with currently used diagnostic modalities in
ovarian cancer, whereas urine demonstrated poor results.
Spectrochemical alterations that can be attributed to circulat-
ing CA125 concentration and structural changes can serve as
classifiers from benign gynaecological conditions and asses-
sors of chemotherapy effects. Further research, ideally in a
single patient cohort with sample collection before and after
NACT, is required to validate these results and investigate
correlations with tumour resectability at IDS as well as sur-
vival outcomes. Finally, future studies should address whether
centrifugation can improve the performance of urine in spec-
troscopic diagnosis of ovarian cancer and determine its poten-
tial for classification of endometriosis through ATR-FTIR
spectroscopy.
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